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Chapter 6

Point Estimation and Sampling
Distributions

6.1
Point Estimation

As discussed in the previous section we use statistics to estimate population parameters. When we
estimate a target parameter with single value we call it a point estimate. x is a point estimate for
µ, and p̂ is a point estimate for p.

Bias of a Point Estimator: We say ✓̂ is an unbiased estimator of population parameter ✓
if E(✓̂) = ✓.

We denote the bias of a point estimator ✓̂ as B(✓).

B(✓̂) = E(✓̂)� ✓

We are also interested in the variance of estimators, and how they are distributed.

6.2
What is a Sampling Distribution?

A sampling distribution refers to the distribution that is formed for a statistic over all possible samples.
Suppose you measure a statistic from a random sample. If you were to conduct the exact same random
sample ad infinitum the distribution of all statistics from all samples form the sampling distribution.
Sampling distributions are absolutely instrumental for statistical inference.

6.3
The Sampling Distribution for p̂

Let us first consider how the sample proportion is calculated. A random sample of n elements is gathered
from a population of N . The number of objects that fall in a particular category are counted, we will
denote this total X.

p̂ =
X

n

First let’s consider the actual distribution of X. We are selecting n objects from a population of N , and
counting the number of sample points in n have some particular characteristic. r denotes the the total
number of objects that are classified as ‘successes’ in the population.
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This means that the population proportion p = r

N
. Recall from Chapter Two that this scenario

describes a hypergeometric random variable. We have X ⇠ Hypergeometric(r, n,N). This allows us to
find the expected value of p̂

E(p̂) = E

✓
X

n

◆

=
1

n
E(X)

=
1

n
n
⇣ r

N

⌘

=
r

N
= p

Notice that the expected value for p̂ is p, the true population proportion. p̂ is an unbiased estimator
of p. If we conduct the same sample over and over again, our sampling distribution for p̂ will be centered
at the true population proportion.

We may also find the variance and standard deviation of p̂

V ar (p̂) = V ar

✓
X

n

◆

=
1

n2
n
⇣ r

N

⌘⇣
1� r

N

⌘✓N � n

N � 1

◆

=
p(1� p)

n

✓
N � n

N � 1

◆

SD(X) =

s
p(1� p)

n

✓
N � n

N � 1

◆

This is most appropriate for small finite populations. The hypergeometric distribution calculations
quickly get out of hand for large populations. For large populations we will use an approximate distri-
bution. We will assume that X ⇠ Binomial(n, p), but this assumption is only appropriate under certain
conditions.

• Independence Condition: We require that N >> n, so that the probability of selecting a
’success’ between sample points is equal. Our ‘cuto↵’ for this condition will be n < 10% of N .

Now, assuming X ⇠ Binomial(n, p) we can find the mean and variance:

E(p̂) = E

✓
X

n

◆

=
1

n
E(X)

=
1

p
(np)

= p

V ar(p̂) = V ar

✓
X

n

◆

=
1

n2
V ar(X)

=
1

n2
(np(1� p))

=
p(1� p)

n

SD(X) =

r
p(1� p)

n
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Notice that p̂ is still unbiased in estimating p. But another problem arises; with large numbers the
calculations also get out of hand for a binomial random variable so we would like to approximate using
the normal distribution. As discussed earlier this is only appropriate for a su�ciently large n and p.

• Normality Condition: The sampling distribution for p̂ is approximately normal if np > 10, and
n(1� p) > 10. This can also be seen as 10 ‘successes’ and 10 ‘failures’ in the sample.

Lastly, we must ensure every sample points are truly behaving as random variables.

• Random Sampling Condition: Samples points must be drawn using random sampling.

These conditions are sometimes ambiguous to check concretely. We must assume them to be true in
order to use this sampling distribution. If we are able to make these assumptions we have

p̂� pr
p(1� p)

n

⇠ Z

For an introductory statistics course we will only interest ourselves in the case where p̂ is normal. So
we will require random sampling, independence and normality.

Example 1: It is known that across North America 65% of University students take longer than
four years to complete their undergraduate degree. You conduct a survey of 100 University of Calgary
graduates and ask them if it took longer than four years to complete their degree.

(a) Let X be the number of students in your sample that took longer than four years to complete their
degree. What is the distribution for X?

Here we have X ⇠ Hypergeometric. However, as n is clearly less than 10% of N we will say
X ⇠ Binomial(n, p). Where n is the sample size and p is the true proportion of college graduates
who took longer than four years to graduate. Here n = 100, and p = 0.65.

(b) What is the sampling distribution for p̂, the proportion of students in the sample who took longer
than 4 years to complete their degree?

First we will notice that the independence condition if fulfilled as n < 0.1N . This sample also

satisfies the normality condition as n(p) = 65 and n(1� p) = 35. We have p̂ ⇠ Normal
⇣
p, p(1�p)

n

⌘
.

(c) What is the probability that the sample proportion is larger than 70% in your sample?

Here we would solve directly using the sampling distribution for p̂, but we will standardize. We know
that

p̂� pq
p(1�p)

n

⇠ Z

Where Z ⇠ Normal (0, 1). We have

z =
0.70� 0.65q

0.65(0.35)
100

= 1.048285

And then we may determine probability using a computer or tables.

P (p̂ > 0.70) = P (Z > 1.048285)

= 1� P (Z  1.048285)

= 0.1472537

So there is an approximately 15% chance that the sample will be comprised of 70% or more students
who took longer than 4 years to finish their under graduate degree.
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6.4
The Sampling Distribution for x

Now suppose X1, X2, . . . , Xn are independent random variables from the same ‘parent distribution’.
The sample mean, x is defined by

x =
X1 +X2 + · · ·+Xn

n

First we will consider the case where the ‘parent distribution’ is normally distributed. In other words
Xi ⇠ Normal(µ,�2) for i = 1, 2, 3, . . . , n. Let’s first look at the expected value, variance and standard
deviation for x.

E(x) = E

✓
X1 +X2 + · · ·+Xn

n

◆

=
1

n
E(X1 +X2 + · · ·+Xn)

=
1

n
(E(X1) + E(X2) + · · ·+ E(Xn))

=
1

n
(µ+ µ+ · · ·+ µ)

=
nµ

n
= µ

So the sample mean x is an unbiased estimator for the population mean µ.

V ar(x) = V ar

✓
X1 +X2 + · · ·+Xn

n

◆

=
1

n2
V ar(X1 +X2 + · · ·+Xn)

=
1

n2
(V ar(X1) + V ar(X2) + · · ·+ V ar(Xn))

=
1

n2

�
�2 + �2 + · · ·+ �2

�

=
n�2

n2

=
�2

n

SD(x) =
�p
n

From earlier chapters we know that the distribution for a sum of normal random variables is also a

normal random variable. So we have x ⇠ Normal
⇣
µ, �p

n

⌘
. As each sample point must be independent

we also require that the sample is less than or equal than 10 percent of the population size. This is
the independence condition; n < 10% of N . We often prefer the standardized version of the normal
distribution.

x� µ
�p
n

⇠ Z

Notice that this distribution requires knowing �. We will need a new approach if � is unknown. This
will be covered later in the chapter.
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Example 1: The weights of pale-throated sloths are known to follow a normal distribution with a
mean weight of 4.5 kg, and standard deviation of 1.1 kg. Suppose that you randomly sample 20 sloths.
What is the probability that your samples has an average weight of 4.8 kg or less?

(a) Describe the sampling distribution for x.

Here we have a normal parent distribution and may also assume than n = 20 is less than 10% of the

total population size of all sloths (n < 0.1N). So we have x ⇠ Normal
⇣
µ = 4.5, �

2

n
= (1.1)2

20

⌘
.

(b) What is the probability that your sample has an average of between 2.3 kg and 4.3 kg?

zlow =
2.3� 4.5

1.1p
20

= �8.944272

almost 9 standard deviations below the mean!

zhigh =
4.3� 4.5

1.1p
20

= �0.8131156

P (2.3  x  4.3) = P (�8.9  Z  �0.8)

= P (Z < �0.8)� P (Z < �8.9)

= 0.2118554

There is an approximately 21.2% chance of observing an average of between 2.3 kg and 4.3 kg.

(c) What is the probability a randomly selected sloth has a weight greater than 4.6 kg?

Careful! We aren’t talking about the sampling distribution here. We are simply drawing a random
point from the parent distribution. Let X be the sloth weights. X ⇠ Normal(4.5, 1.1). We have

P (X > 4.6) = P

✓
Z >

4.6� 4.5

1.1

◆

= P (Z > 0.09090909)

= 1� P (Z  0.09090909)

= 0.4637824

There is a roughly 46% chance of observing a pale-throated sloth with a weight greater than 4.6 kg.
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6.5
The Central Limit Theorem

We are now comfortable finding the sampling distribution for x if the parent distribution is normal. But
what if you are sampling from a population with a non-normal distribution? Now we will introduce the
central limit theorem.

The Central Limit Theorem: Let X1, X2, . . . , Xn be independent identically distributed
random variables (i.i.d) with E(Xi) = µ and V ar(Xi) = �2. The sample mean is defined by

X =
X1 +X2 +X3 + · · ·+Xn

n

As n tends to infinity, the sampling distribution for X converges to a normal distribution with

mean µx = µ and variance �2
x
= �

2

n
. In other words as n ! 1, X ⇠ Normal

⇣
µ, �

2

n

⌘
, regardless

of the parent distribution. We will assume samples of size n � 30 are large enough for the central
limit theorem to apply. We may also standardize our result; as n gets su�ciently large (n � 30).

X � µ
�p
n

⇠ Z

Example 1: Suppose you are rolling a 10 sided die. Every outcome has an equal chance of
occurring. Shown below is the probability distribution for 10000 rolls of the die. The probabilities are
roughly uniform for all outcomes. This is the ‘parent’ distribution. Let’s let X denote the number that
appears on each roll of the dice.

Next we can look at the sampling distribution for samples of di↵erent sizes. Here X1, X2,. . ., Xn

represent the outcomes for the sample of n die. Show below are the sampling distributions of X for
10000 samples of size 2, 10, and 30.

We can see that as the sample size increases, the sampling distribution for X converges to a normal
distribution.
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Example 2: A certain carnival game is designed with the following profit distribution

X (Profit) -$1 $1 $5 $20
P (X = x) 0.95 0.03 0.02 0.01

(a) What is a player’s expected earnings?

E(X) = �1(0.95) + 1(0.03) + 5(0.02) + 20(0.01)

= �0.62

(b) Determine V ar(X).

E(X2) = (�1)2(0.95) + (1)2(0.03) + (5)2(0.02) + (202)(0.01)

= 5.48

V ar(X) = E(X2)� E(X)2

= 5.48� (�0.62)2

= 5.4556

(c) Suppose each night you visit the carnival you play the game 30 times. Describe the distribution for
your average nightly earnings.

Here we have a large enough sample for the central limit theorem to apply. We have µ = �0.62 and
�
2

n
= 5.4556

30 = 0.1818533. This suggests that x ⇠ Normal(µx = �0.62,�2
x
= 0.18). We also have

�x =
p
0.1818533 = 0.4264426

(d) What is the probability that your average nightly profit is positive?

P (x > 0) = P

 
x� µ

�p
n

>
0� (�0.62)

0.4264426p
30

!

= P (Z > 7.963275)

= 1� P (Z  7.963275)

⇡ 0

(e) What’s the probability you win more than $1 when playing the game?

Careful! We aren’t talking about the sampling distribution here, but rather the parent distribution.
By simple inspection of the distribution we have P (X > 1) = P (X = 5) + P (X = 20) = 0.03
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Assumptions For Using A Normal Model
To summarize, the normal model may only be used for the sampling distribution of x under certain
conditions. In practice we must assume these conditions hold true

• Normality: We require the sample is greater than 30, so the central limit theorem applies or we
require the parent population to be normal.

• Independence: We require sample points to be independent of each other. We may make this
assumption whenever n < 10% of N .

• Random Sampling: We require that samples are drawn using a random sampling technique, so
we may treat each sample point as a random variable.

When all assumptions can be made we have x ⇠ Normal
⇣
µ, �

2

n

⌘
. Notice that the assumptions we

have to make are very similar to that of the sample proportion.

6.6
A Sampling Distribution involving s2

Next we will discuss another sampling distribution involving the sample variance s2, and population
variance �2. Assume X1, X2, . . . , Xn are a random sample of size n from a normal distribution with
mean µ and variance �2.

s2(n� 1)

�2
⇠ �2

n�1

Example 1: The weights of pale-throated sloths are known to follow a normal distribution with a
mean weight of 4.5 kg, and standard deviation of 1.1 kg. Suppose that you randomly sample 20 sloths.
What is the probability that your sample has a standard deviation of 0.9 or greater?

Notice that � and s2 are both known in this problem.

P (s2 > 0.92) = P

✓
s2(n� 1)

�2
>

(0.9)2(20� 1)

(1.1)2

◆

= P
�
�2
19 > 12.71901

�

= 1� P
�
�2
19  12.71901

�

= 0.8526398

There is an approximately 85% chance of observing a standard deviation of 0.9 or greater in the sample.
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6.6.1 Standard Deviation and Standard Error

In some of the distributions we have examined so far we run into a slight issue; the standard deviation
of the sampling distribution is a function of the population parameters. For example

�x =
�p
n

This is a problem because population parameters are often unknown. In this case we want to estimate
the parameter with a statistic. We may estimate the population standard deviation � with the sample
standard deviation s. We call this estimate the standard error. This will be an instrumental idea
when constructing confidence intervals in upcoming sections. In general, standard error is a term used
to describe the estimated standard deviation of a statistic.

But we run into another issue; when we estimate a parameter with a statistic the distribution can
change. For example, after making the appropriate assumptions we know

x� µ
�p
n

⇠ Z

But after estimating � with s, what is the new distribution?

x� µ
sp
n

⇠ ?

6.7
Using the t Distribution

Consider a standard normal random variable Z, and �2 random variable with k degrees of freedom. The
t distribution is defined as

t =
Zq
�2
k
k

We also know that in certain circumstances (recall conditions) that

0

B@
X � µ

�p
n

1

CA ⇠ Z and
s2(n� 1)

�2
⇠ �2

n�1

Using these statistics we can construct a t distribution

0

B@
X � µ

�p
n

1

CA

vuuut

✓
s2(n� 1)

�2

◆

(n� 1)

=
(X � µ)

sp
n

⇠ tn�1

This is the case where we have estimated � using s.
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Now let’s discuss the assumptions that must be made when using the t distribution.

• Simple Random Sampling: We require our sample to be drawn using a random sampling
technique. This ensures X1, X2, . . . , Xn are truly random variables.

• Independence: We require that X1, X2, . . . , Xn are independent random variables. For sampling
without replacement we will require n < 10%N so that each sample point is independent.

• Normality: We require X1, X2, . . . , Xn come from a normal population with mean µ, and
variance �2. This ensures that

 
X � µ

�p
n

!
⇠ Z and

s2(n� 1)

�2
⇠ �2

n�1

However, due to the central limit theorem we know for samples of n � 30 we will have

 
X � µ

�p
n

!
⇠ Z

It turns out the t distribution is quite robust. If the parent population is roughly normal or at least
symmetrical, unimodal, and without outliers and we have a su�ciently large sample it’s alright to
assume that

x� µ
sp
n

⇠ tn�1

We must be extremely cautious when dealing with small samples of data that appears non-normal,
heavily skewed, or heavy tailed. A t distribution may be entirely inappropriate.

Let’s illustrate this idea by observing several cases.

Case I! Let’s assume that X1, X2, . . ., X100 are independent, identically distributed variables with
Xi ⇠ Normal(10,2). Let’s look at the sampling distribution for some of the statistics we discussed over
100000 generated samples.

x� µ
�p
n

⇠ Z s2(n� 1)

�2
⇠ �2

99

x� µ
sp
n

⇠ t99

The histograms are showing the experimental sampling distribution for 100,000 samples. The super-
imposed curve is the theoretical sampling distribution. This is our ideal scenario, we have a large sample
size, and a normal parent population. You can see that under the correct conditions it is quite a nice
fit.
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Case II! Now consider a sample of X1, X2, . . ., X10 where X ⇠ Normal(10, 2). This is the same
as case one, but with a small sample size. Let’s inspect the distribution.

x� µ
�p
n

⇠ Z s2(n� 1)

�2
⇠ �2

9

x� µ
sp
n

⇠ t9

Notice that since we have normality in the parent distribution, the t distribution is an appropriate
fit regardless of the small sample size.

Case III! Let’s assume thatX1, X2, . . ., X10 are identically distributed variables withXi ⇠ Exp(3).
Yikes! We haven’t explored the exponential distribution at all this far, however the pdf is shown below:

The important takeaway here is that the distribution is nowhere near normal! It’s skewed to the
right. Another cause for concern is our sample is only comprised of 10 points! Let’s look at the sampling
distribution for some of the statistics we discussed over 100000 generated samples.
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x� µ
�p
n

⇠ ? s2(n� 1)

�2
⇠ ?

x� µ
sp
n

⇠ ?

You can see with the skewed parent population and low sample size the theoretical sampling distri-
butions are a terrible fit. This is why we must be extremely mindful of the assumptions we are making
when using the t distribution.

The important takeaway here is that the t distribution is really only appropriate under certain
circumstances. Let’s reiterate

• Simple Random Sampling: We require our sample to be drawn using a random sampling
technique. This ensures X1, X2, . . . , Xn are truly random variables.

• Independence: We require that X1, X2, . . . , Xn are independent random variables. For sampling
without replacement we will require n < 10%N so that each sample point is independent.

• Normality: We require that n � 30 or that the parent population is approximately normal. Even
with relatively large sample sizes we should still be weary of skewness and heavy tails in data.

Example 1: X1, X2, . . ., X500 are independent random variables that form a random sample of
n = 500 with Xi ⇠ �2

10 for i = 1, 2, 3, . . . , 500. f(x), the probability density function for the parent
distribution is shown below

1. Describe the probability distribution for x.

Recall that for a Chi Square random variable X with k degrees of freedom we have E(X) = k, and
V ar(X) = 2k. In this example k = 10. Since we have a large sample size n = 500 we will have

x ⇠ Normal
⇣
10,
q

20
500

⌘
.
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2. Find the probability that the sample mean will be greater than 9.8 in future samples

When we have previously defined the sampling distribution this is easy.

P (X > 9.8) = P

0

B@
X � µ

�p
n

<
9.8� 10q

20
500

1

CA

= P (Z > �1)

= 1� P (Z  �1)

= 0.8413447

3. Find the probability that the sample mean will be between 0 and 10.1 in future samples

P
�
0  X  10

�
= P

0

B@
0� 10q

20
500

 X � µ
�p
n

 10.1� 10q
20
500

1

CA

= P (�50  Z  0.5)

= P (Z  0.5)� P (Z  �50)

= 0.6914625

4. Determine P (X1 > 1)

Be careful here. We are just talking about the parent distribution. This has nothing to do with
the sample mean.

P (X1 > 10) = P (�2
10 > 10)

= 1� P (�2
10  10)

= 0.4404933

Example 2: A random sample of n = 801 Pokémon has an average attack score of x = 78, with
standard deviation s = 32. Suppose that the true average attack of Pokémon is know known to be
µ = 70. The distribution for the sample is shown below.

(a) What is the probability that you will find an average score that is less than 75 in future samples?

Here we have a large sample n = 801, and relatively normal data, so we may use a t distribution.

P (x < 78) = P

 
x� µ

sp
n

<
70� 78

32p
801

!

= P (t800 < �2.653307)

= 0.004064423
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6.7.1 Quick Review

let’s quickly summarize the results that we have formulated so far

Distribution Assumptions

p̂ ⇠ Normal
⇣
p, p(1�p)

n

⌘ - Random Sampling

- Independence

- Normality

p̂� pr
p(1� p)

n

⇠ Z

- Random Sampling

- Independence

- Normality

x ⇠ Normal
⇣
µ, �

2

n

⌘ - Random Sampling

- Independence

- Normality

x� µ
�p
n

⇠ Z

- Random Sampling

- Independence

- Normality

x� µ
sp
n

⇠ tn�1

- Random Sampling

- Independence

- Normality

6.8
A Di↵erence of Proportions

We are also interested in the sampling distribution of the di↵erence between two sample proportions for
two di↵erent samples. Suppose we have two samples of size n1 and n2 with p̂1, and p̂2. In order to arrive
at our sampling distribution we have a few requirements:

• Random Sampling: We require that both samples are drawn using random sampling. We also
require that samples are independent.

• Independence: We require independence between each observation in our sample. We can make
this assumption whenever n1 < 10% of N1 and n2 < 10% of N2.

• Normality: Just like the one sample case, we would like to approximate our sampling distribution
using a normal distribution. This will require large enough samples. This assumption can be made
whenever n1p1 > 10, n1(1� p1) > 10, n2p2 > 10, and n2(1� p2) > 10. This can also be seen as 10
‘successes’ and 10 ‘failures’ in each sample.

Let’s look at the mean and variance for a di↵erence in proportions. flow

E(p̂1 � p̂2) = E(p̂1)� E(p̂2)

= p1 � p2

V ar(p̂1 � p̂2) = V ar(p̂1) + V ar(p̂2)

=
p1(1� p1)

n1
+

p2(1� p2)

n2

SD(p̂1 � p̂2) =

s
p1(1� p1)

n1
+

p2(1� p2)

n2
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If we are able to make all the appropriate assumptions we have

p̂1 � p̂2 ⇠ Normal

✓
p1 � p2,

p1(1� p1)

n1
+

p2(1� p2)

n2

◆

We may also standardize this distribution

(p̂1 � p̂2)� (p1 � p2)r
p1(1� p1)

n1
+

p2(1� p2)

n2

⇠ Z

Example 1: In one town 51% of the voters are conservative and in a second town 44% of the voters
are conservative. Suppose 100 voters are surveyed from each town.

(a) Is a normal model appropriate for the di↵erence in proportions of conservative voters from the two
samples?

We need to check our requirements for the normal model

• Simple Random Sample: here we will assume the samples are drawn randomly

• Independence: We will assume both towns have more than 1000 people, so n1 < 10%N1 and
n2 < 10%N2. This means we will assume sample points are independent.

• Normality: We have 51 expected successes and 49 expected failures in the first town, and 44
expected successes and 56 expected failures in the second town. This means we can assume
there will be normality in the sampling distribution for the di↵erence of proportions.

(b) What is the probability that the first sample will yield a lower sample proportion of conservative
voters than the second town?

P (p̂1 � p̂2 < 0) = P

0

@ (p̂1 � p̂2)� (p1 � p2)q
p1(1�p1)

n1
+ p2(1�p2)

n2

<
0� (.51� .44)q

(.51)(0.49)
100 + (0.44)(0.56)

100

1

A

= P (Z < �0.9936328)

= 0.1602008

6.8.1 Populations with a Common Proportion

Sometimes the population proportion may be same for two di↵erent populations; p1 = p2 = pc. As long
as our requirements are fulfilled we will have

p̂1 � p̂2 ⇠ Normal

✓
0,

pc(1� pc)

n1
+

pc(1� pc)

n2

◆

(p̂1 � p̂2)q
pc(1�pc)

n1
+ pc(1�pc)

n2

⇠ Z
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6.9
A Di↵erence of Means

As with proportions, we are also interested in the sampling distribution that formed from the di↵er-
ence between two sample means, x1 � x2. In order to use this sampling distribution we have several
requirements.

• Random Sampling: We require that both samples are drawn using random sampling.

• Independence: We require independence between each observation in our sample. We can make
this assumption can be made whenever n1 < 10% of N1 and n2 < 10% of N2.

• Normality: Just like the one sample case, we would like to approximate our sampling distribution
using a normal distribution. Here we will require n1 � 30, and n2 � 30, or both samples come
from normal parent populations (data that appears approximately normal).

Just like with proportions we require that the samples are independent of each other. Let’s take a
look at the mean and variance.

E(x1 � x2) = E(x1)� E(x2)

= µ1 � µ2

V ar(x1 � x2) = V ar(x1) + V ar(x2)

=
�2
1

n1
+

�2
2

n2

SD(x1 � x2) =

s
�2
1

n1
+

�2
2

n2

If we are able to make all appropriate assumptions then we have

x1 � x2 ⇠ Normal

✓
µ1 � µ2,

�2
1

n1
+

�2
2

n2

◆

We may also standardize this distribution

(x1 � x2)� (µ1 � µ2)q
�2
1

n1
+ �2

2
n2

⇠ Z

Example 1: The starship Enterprise is exploring a new planet. Spock is inspecting two di↵erent
alien species. Suppose the first species has a mean weight of 5 kg with a standard deviation of 1 kg,
and the second species has a mean weight of 6 kg with a standard deviation of 2 kg. Spock randomly
samples 63 of species one, and 80 of species 2.

(a) Is a normal model appropriate for a di↵erence in sample means?

Let’s look at the requirements for the normal model:

• Random Sampling: It is clearly stated that Spock takes a simple random sample

• Independence: The population sizes for the two types of aliens are not clearly stated but we
will assume that n1 < 10%N1 and n2 < 10%N2.

• Normality: Here we have a sample of n1 = 62 and n2 = 80.

As the sample fulfills all requirements the normal model is appropriate.
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(b) What is the probability that species one is greater than 1 kg heavier than species two?

P (x1 � x2 > 1) = P

0

@ (x1 � x2)� (µ1 � µ2)q
�2
1

n1
+ �2

2
n2

>
1� (µ1 � µ2)q

�2
1

n1
+ �2

2
n2

1

A

= P

0

@Z >
1� (5� 6)q

12

63 + 22

80

1

A

= P (Z > 7.792489) ⇡ 0

6.9.1 Revisiting the t Distribution: Two Samples

Much like the one sample case �1 and �2 are often unknown to a researcher. In this case we will use a
familiar strategy. We will estimate �1 with s1 and �1 with s2. Now we will examine the distribution of

(x1 � x2)� (µ1 � µ2)s
s21
n1

+
s22
n2

Next will divide this scenario into two cases:

• Case I: �2
1 = �2

2 , the two populations share
a common standard deviation. We will refer
to this as the ‘pooled variance’ case.

• Case II: �2
1 6= �2

2 , the two populations do not
share a common standard deviation. We will
call this the ‘non-pooled variance’ case.

6.9.2 The Pooled Variance Case

When we assume two populations have the same variance, �1 = �2, we may estimate the common
variance with the pooled sample variance.

s2
p
=

s21(n1 � 1) + s22(n2 � 1)

n1 + n2 � 2

After we estimate both s21 and s22 with s2
p
we arrive at our result

(x1 � x2)� (µ1 � µ2)s
s2
p

n1
+

s2
p

n2

⇠ tn1+n2�2

Notice that the degrees of freedom aligns with the formula for the pooled variance. We can construct
this distribution using the same process as the one sample case.

Let’s look at the assumptions we must make for these results to hold true.

• Equal variances: We require the two populations to have a common variance that we estimate
using pooling. We call two populations with the same variance homoscedastic.

• Random Sampling: We require both samples to be drawn randomly.

• Independence: We require that each sample is less than 10% of its respective population

• Normality: We require that the two parent populations are approximately normal or the sample
sizes are su�ciently large (n1 � 30, n1 � 30).
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6.9.3 The Non-pooled Variance Case

In this scenario we cannot rely on the assumption that �2
1 = �2

2 . With �2
1 6= �2

2 , we must estimate �2
1

with s21, and �2
2 with s22. Looking at the sampling distribution we have

(x1 � x2)� (µ1 � µ2)q
s21
n1

+ s22
n2

⇠ tdf

Finding the degrees of freedom for this sampling distribution is less intuitive. The derivation is left for
a more advanced course.

df =

✓
s21
n1

+
s22
n2

◆2

s41
n2
1(n1 � 1)

+
s42

n2
2(n2 � 1)

To ensure this sampling distribution is appropriate we must make several assumptions

• Non Equal Variances: We are assuming the two populations do not have a common variance.
We call two populations with di↵erent variances heteroscedastic.

• Random Sampling: We require both samples to be drawn randomly.

• Independence: We require that each sample is less than 10% of its respective population

• Normality: We require that the two parent populations are approximately normal or the sample
sizes are su�ciently large (n1 � 30, n2 � 30).

Notice that in both of these cases we introduce some ambiguity. How ‘normal’ must a sample be in
order to assume normality in the parent population? How do we tell if two variances are statistically
di↵erent? We will examine these questions more deeply when we explore hypothesis testing.

Let’s summarize the ‘di↵erence’ distributions we have looked at.

Distribution Assumptions

p̂1 � p̂2 ⇠ Normal
⇣
p1 � p2,

p1(1�p1)
n1

+ p2(1�p2)
n2

⌘ - Random Sampling

- Independence

- Normality

(p̂1 � p̂2)� (p1 � p2)r
p1(1� p1)

n1
+

p2(1� p2)

n2

⇠ Z

- Random Sampling

- Independence

- Normality

x1 � x2 ⇠ Normal
⇣
µ1 � µ2,

�
2
1

n1
+ �

2
2

n2

⌘ - Random Sampling

- Independence

- Normality

(x1 � x2)� (µ1 � µ2)q
�2
1

n1
+ �2

2
n2

⇠ Z

- Random Sampling

- Independence

- Normality

(x1 � x2)� (µ1 � µ2)q
s2p

n1
+

s2p

n2

⇠ tn1+n2�2

- Equal Variances

- Random Sampling

- Independence

- Normality

(x1 � x2)� (µ1 � µ2)q
s21
n1

+ s21
n2

⇠ tdf

- Nonequal Variances

- Random Sampling

- Independence

- Normality
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