# UNIT 2: TWO VARIABLE DATA



## WHAT IS OUR GOAL FOR UNIT 2?

- **Representing** Relation Categorical Data

- **Representing** Relatio Quantitative Data

- Representing Relationships Between Bivariate

- Representing Relationships Between Bivariate

- Is there a relationship between two Categorical Variables?
- We will represent relationships using tables (same as treat example before), Graphs, and Statistics (numbers)

## – Our Example: X: Shirt Colour 🔴 🔵 🔵 , Y: Status 🕵 😃





If George R.R. Martin wrote for Star Trek



Matthew Barsalou published an article in Significance that studies this from a statistical perspective



## – Our Example: X: Shirt Colour 🔴 🔵 🔵 , Y: Status 🕱 😃

| Crew Member                         | Area                                       | Shirt Color | Status  |
|-------------------------------------|--------------------------------------------|-------------|---------|
| Brendan                             | Operations,<br>Engineering and<br>Security | Red 🔴       | DEAD 🕵  |
| Leif                                | Command And Helm                           | Gold        | DEAD 🕵  |
| Shailah                             | Science and Medical                        | Blue        | Alive 😃 |
| Dataset is composed of 430 cremates |                                            |             |         |

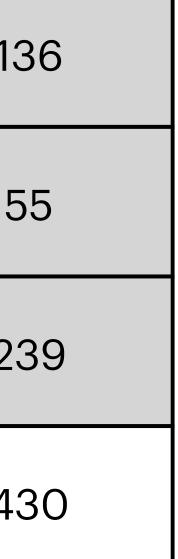
Enterprise NCC 1701 casualties from episodes aired between September 8, 1966 and June 03, 1969 based on casualty figures from Memory Alpha.



 First we tabulate data into a col way table)

| 129 | 7  | 1   |
|-----|----|-----|
| 46  | 9  | ц., |
| 215 | 24 | 2   |
| 390 | 40 | 4   |

## - First we tabulate data into a contingency table (also known as a two

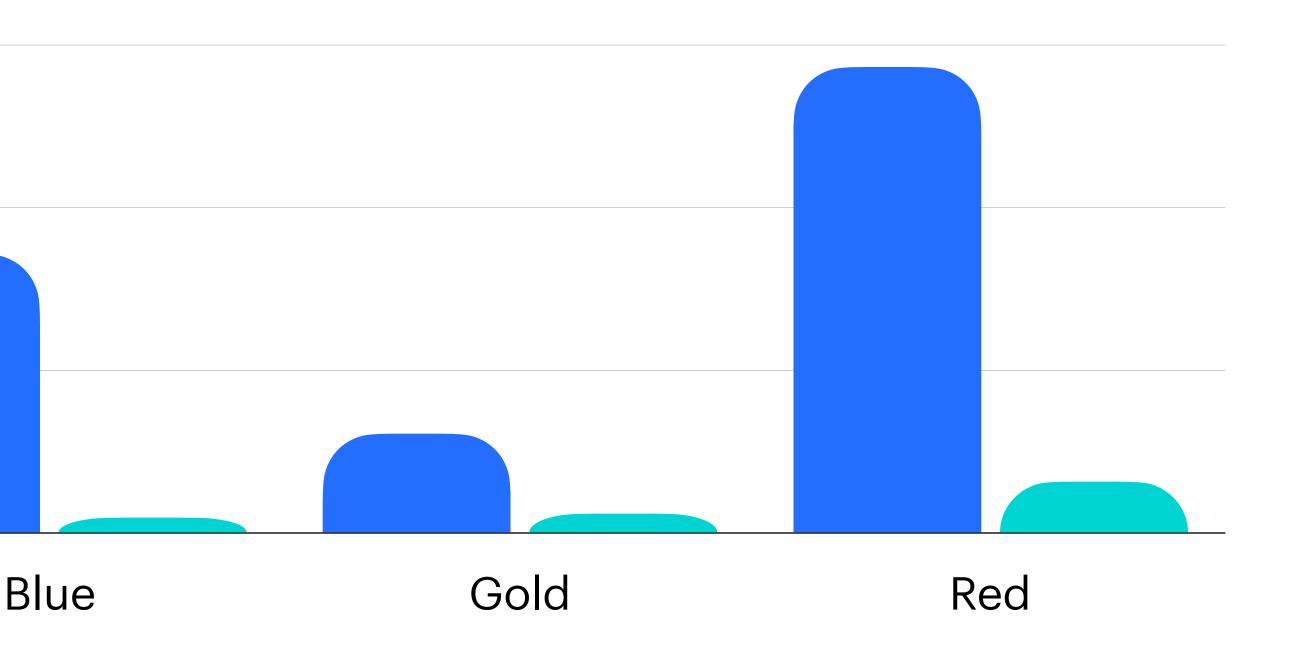


# Marginal DistributionJoint Distribution

## - First we tabulate data into a **contingency table** (also known as a two way table)

|  |     |    |     | It's hard to r<br>300 |
|--|-----|----|-----|-----------------------|
|  | 129 | 7  | 136 | 225                   |
|  | 46  | 9  | 55  | 150                   |
|  | 215 | 24 | 239 | 75                    |
|  | 390 | 40 | 430 | OE                    |

## notice association when using frequencies





## **Conditional Probability**

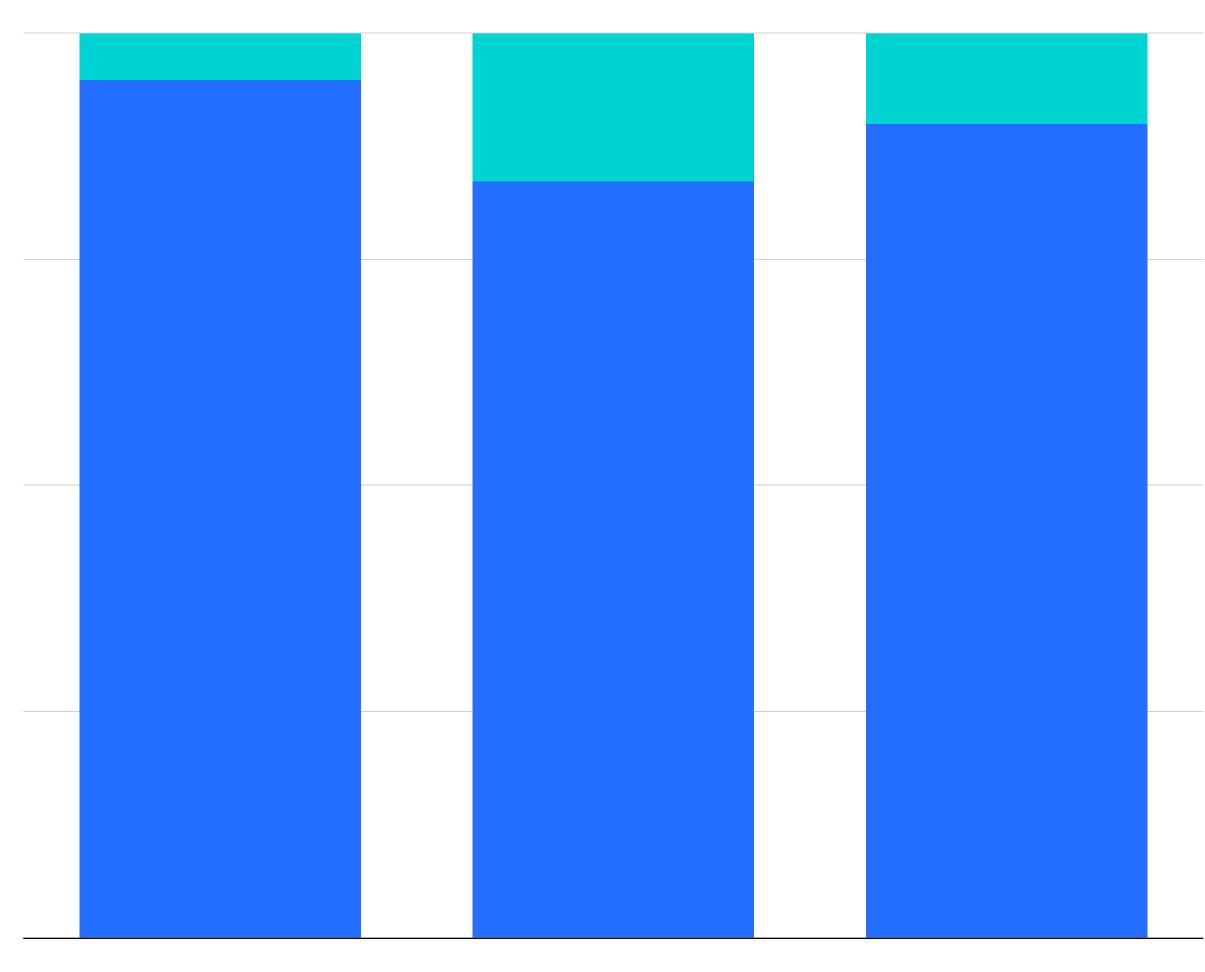
| 129 | 7  | 136 |
|-----|----|-----|
| 46  | 9  | 55  |
| 215 | 24 | 239 |
| 390 | 40 | 430 |

## Questions

- What is the probability of dying, given you are a Red Shirt?
- 2. What is the percentage of crew members that have red shirts and died?
- 3. What is the percentage of blue shirts who survived?
- 4. What is the probability of dying Given you are a Gold Shirt?

## - Next we may find **conditional relative frequencies**

|           |           |   | 0.75 |
|-----------|-----------|---|------|
| 0.9485294 | 0.0514706 | 1 | 0.5  |
| 0.8363636 | 0.1636364 | 1 | 0.25 |
| 0.8995816 | 0.1004184 | 1 | 0    |



Blue

Gold



## Distribution of **Conditional Relative** Frequencies

| 0.9485294 | 0.0514706 | 1 |
|-----------|-----------|---|
| 0.8363636 | 0.1636364 | 1 |
| 0.8995816 | 0.1004184 | 1 |

If shirt colour is **Independent** of Status, then the probability of dying should be the same regardless of shirt colour.

**Chi-Square Tests** (For Later)



- Another type of graph used is
   Mosaic Plots.
   Widths describe
   how many
   observations fall in
   each category.
- Mosaic plot showing cross-sectional distribution through time of different musical themes in the Guardian's list of "1000 songs to hear before you die"

Heartbreak

Life and death

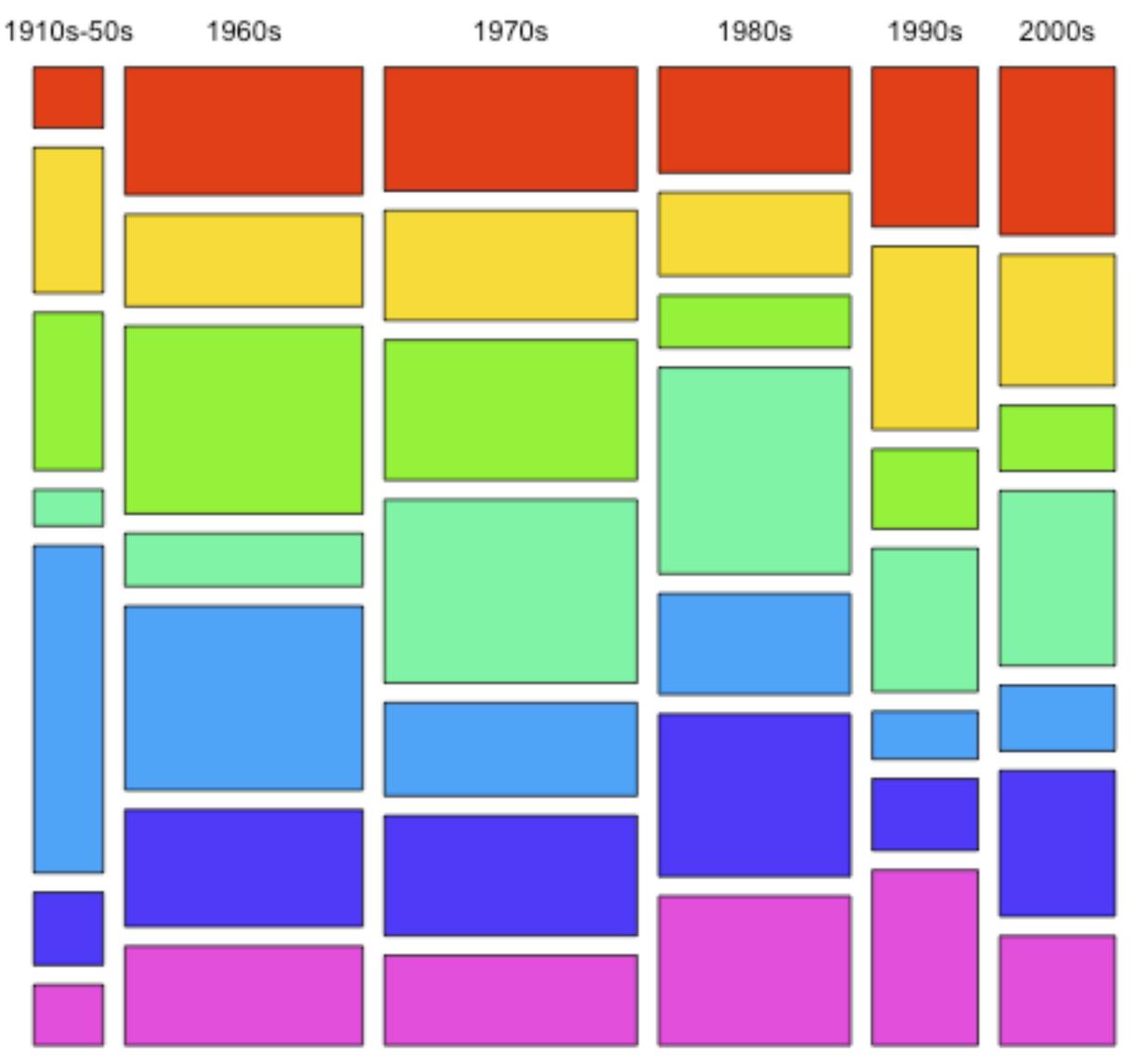
Love

Party songs

People and places

Politics and protest

Sex



stubbornmule.net

e.net

# **Examples:** Question 1, Page 107 Question 2, Page 108 • Question 3, Page 112

**Homework:** Read Pages 97-104 Barron's, Quiz 6, Quiz 7

- using a scatter plot.
- - Form
  - Direction
  - Strength

- We represent relationships between two numeric variables (sample data)

- When describing a relationship there are several things we must consider





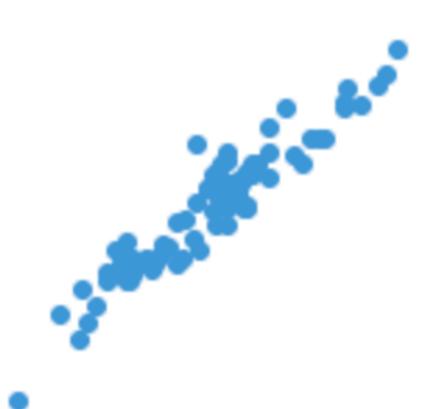


Is there a relationship between the amount of sugar (in grams) and the number of calories in movie-theatre candy? Here are the data from a sample of 12 types of candy.

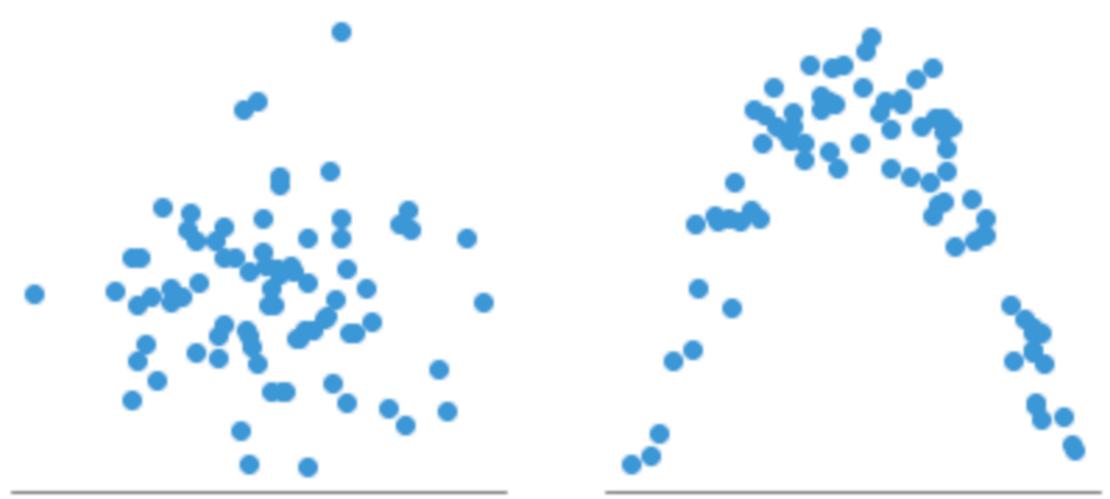
| Name                      | Sugar (g) | Calories |
|---------------------------|-----------|----------|
| <b>Butterfinger Minis</b> | 45        | 450      |
| Junior Mints              | 107       | 570      |
| M&M'S                     | 62        | 480      |
| Milk Duds                 | 44        | 370      |
| Peanut M&M'S              | 79        | 790      |
| Raisinets                 | 60        | 420      |
| Reese's Pieces            | 61        | 580      |
| Skittles                  | 87        | 450      |
| Sour Patch Kids           | 92        | 490      |
| SweeTarts                 | 136       | 680      |
| Twizzlers                 | 59        | 460      |
| Whoppers                  | 48        | 350      |

Using your TI-84, plot the data.

How Would You Describe the Relationship?

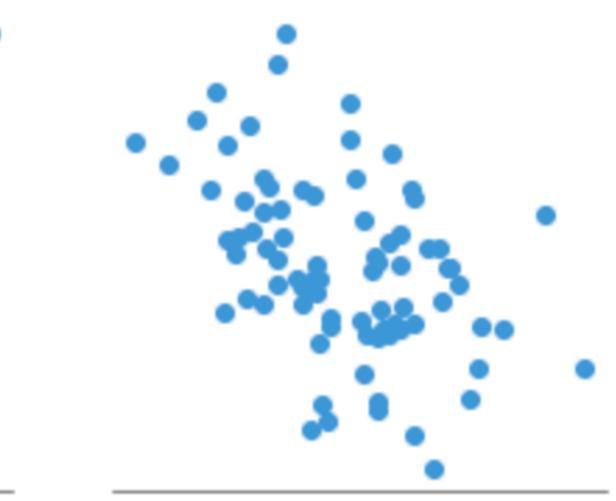


strong, positive, linear



null / no relationship

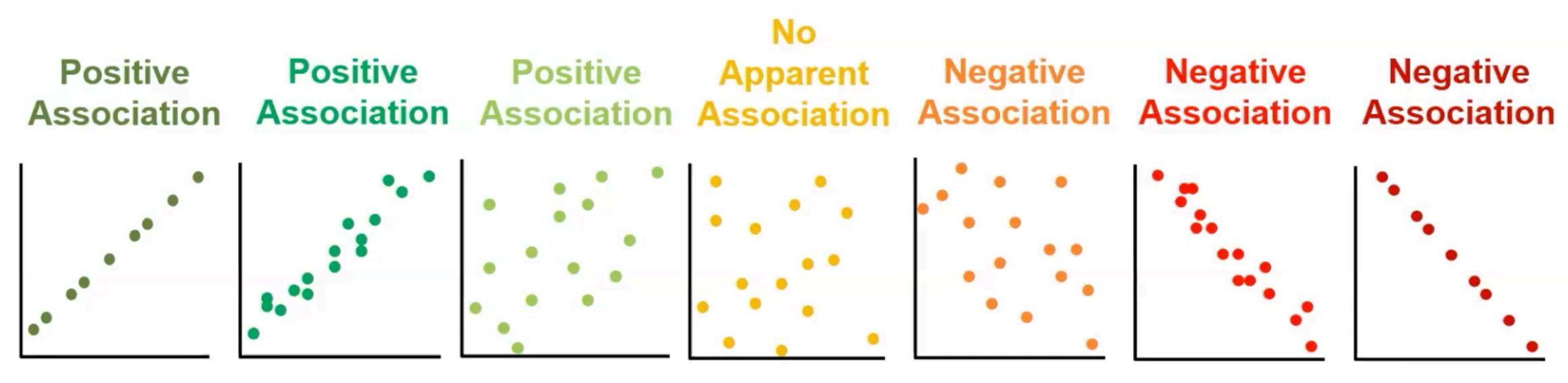
## Form of relationship



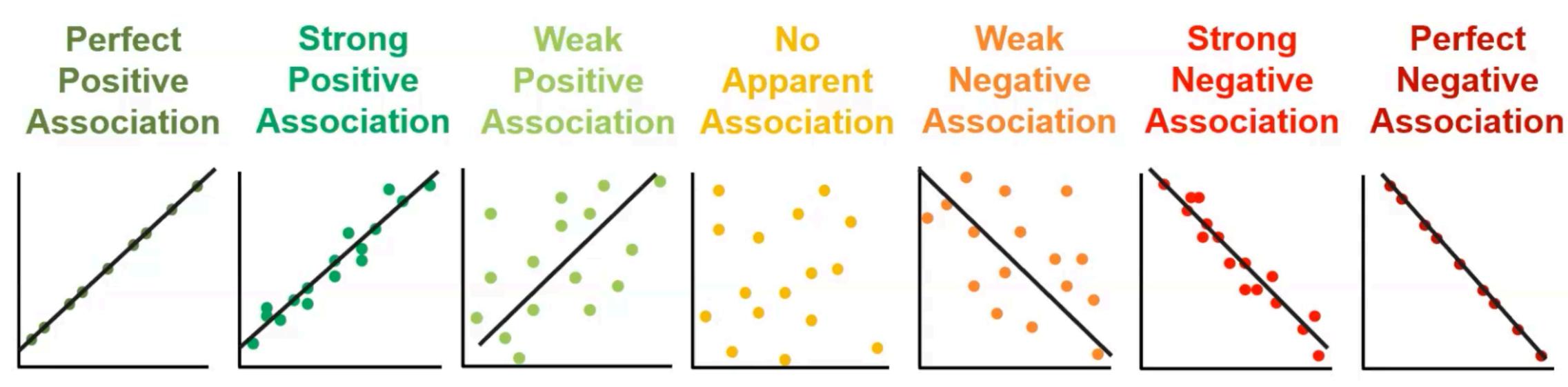
moderate, negative, linear

strong, non-linear

## **Direction** of relationship



## Strength of relationship





## Influential Points of relationship

## Outliers

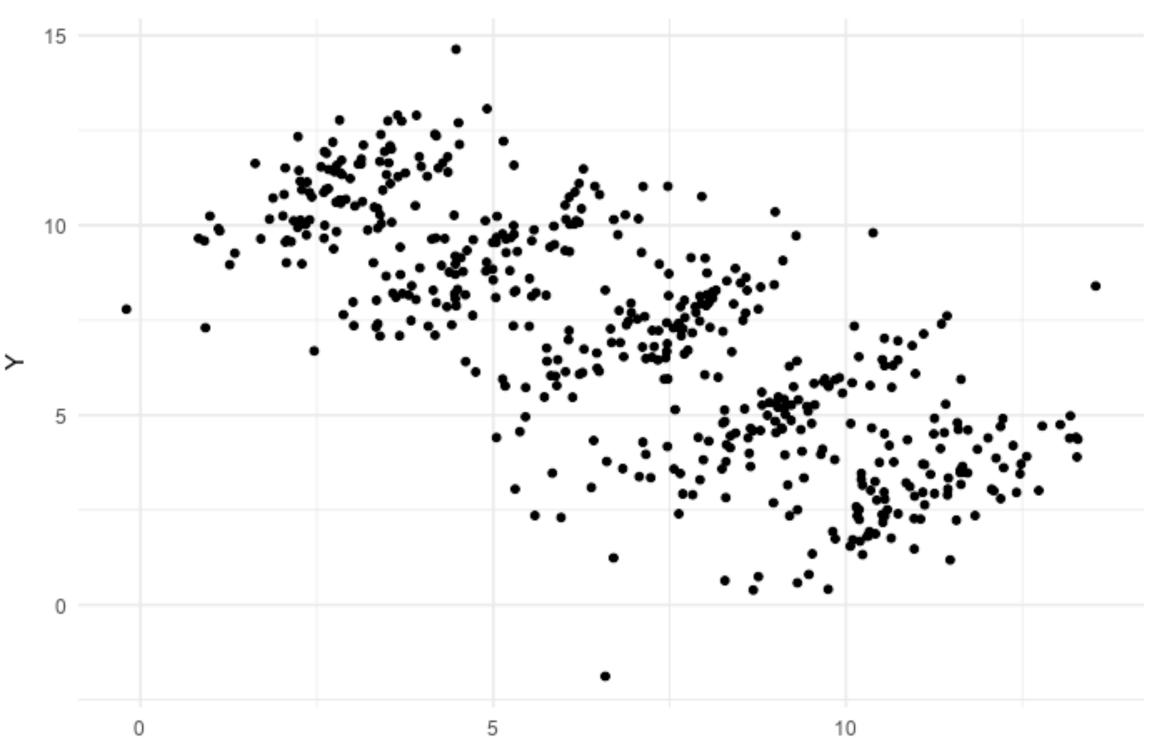
https://www.desmos.com/calculator/jwquvmikhr

## Points of High Leverage

## the trend disappears, or reverses when groups are combined.

Korrelation:

## **– Example:** Q7 P.111



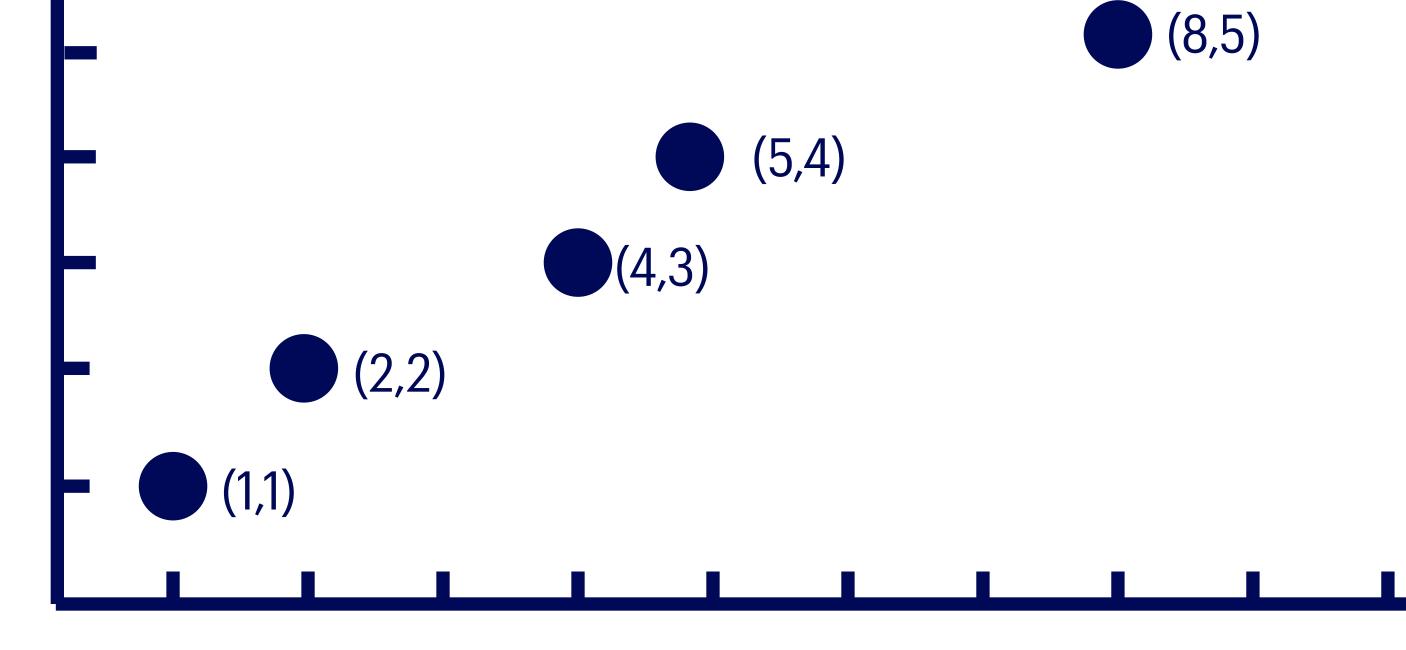
**– Simpson's Paradox:** There is an association within groups of data but

Х

# What is the Sample Covariance? $Cov(X, Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n - 1}$

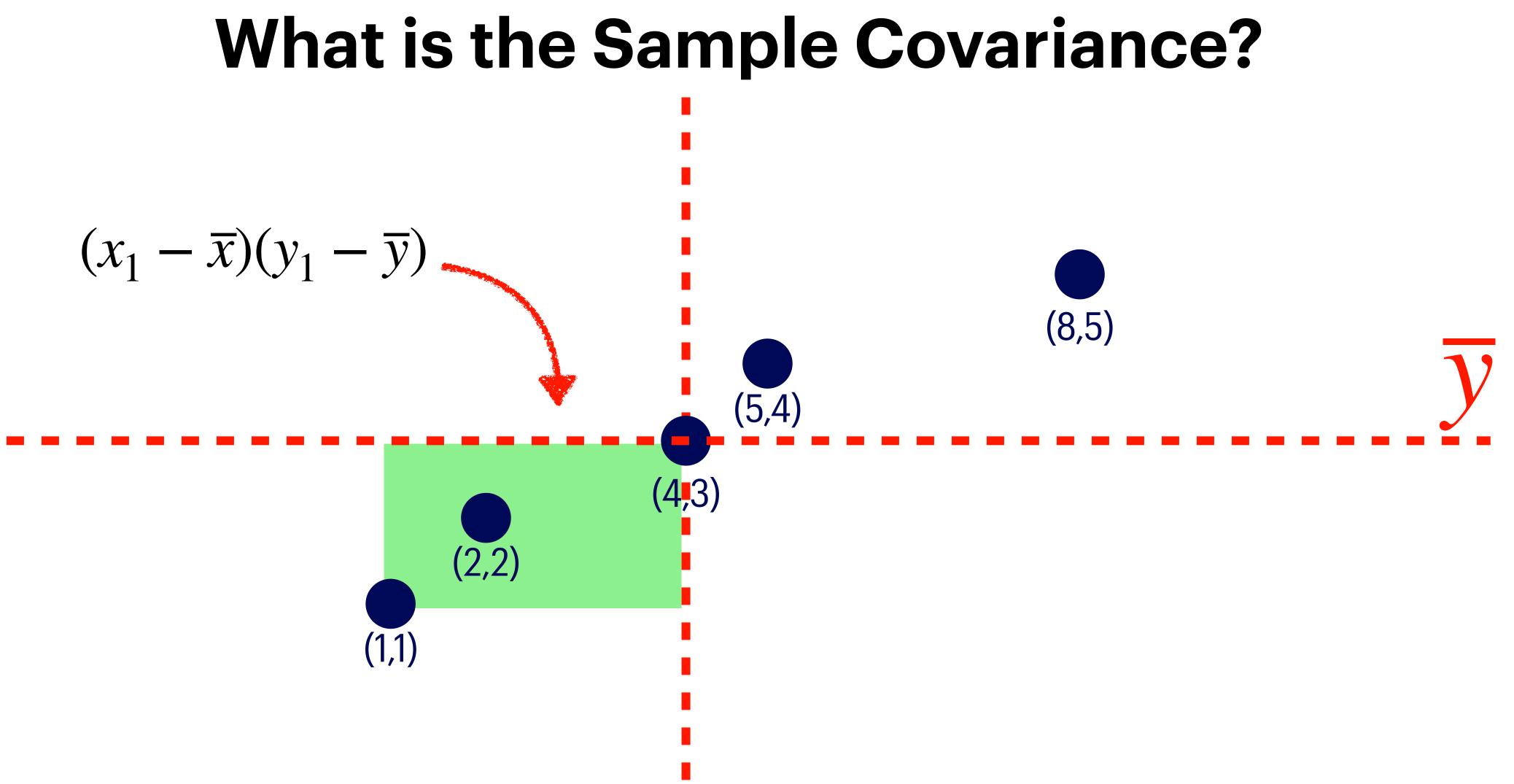
## What is the Sample Covariance?

- How Would You Describe this relationship?
- What is  $\overline{x}$
- What is  $\overline{y}$

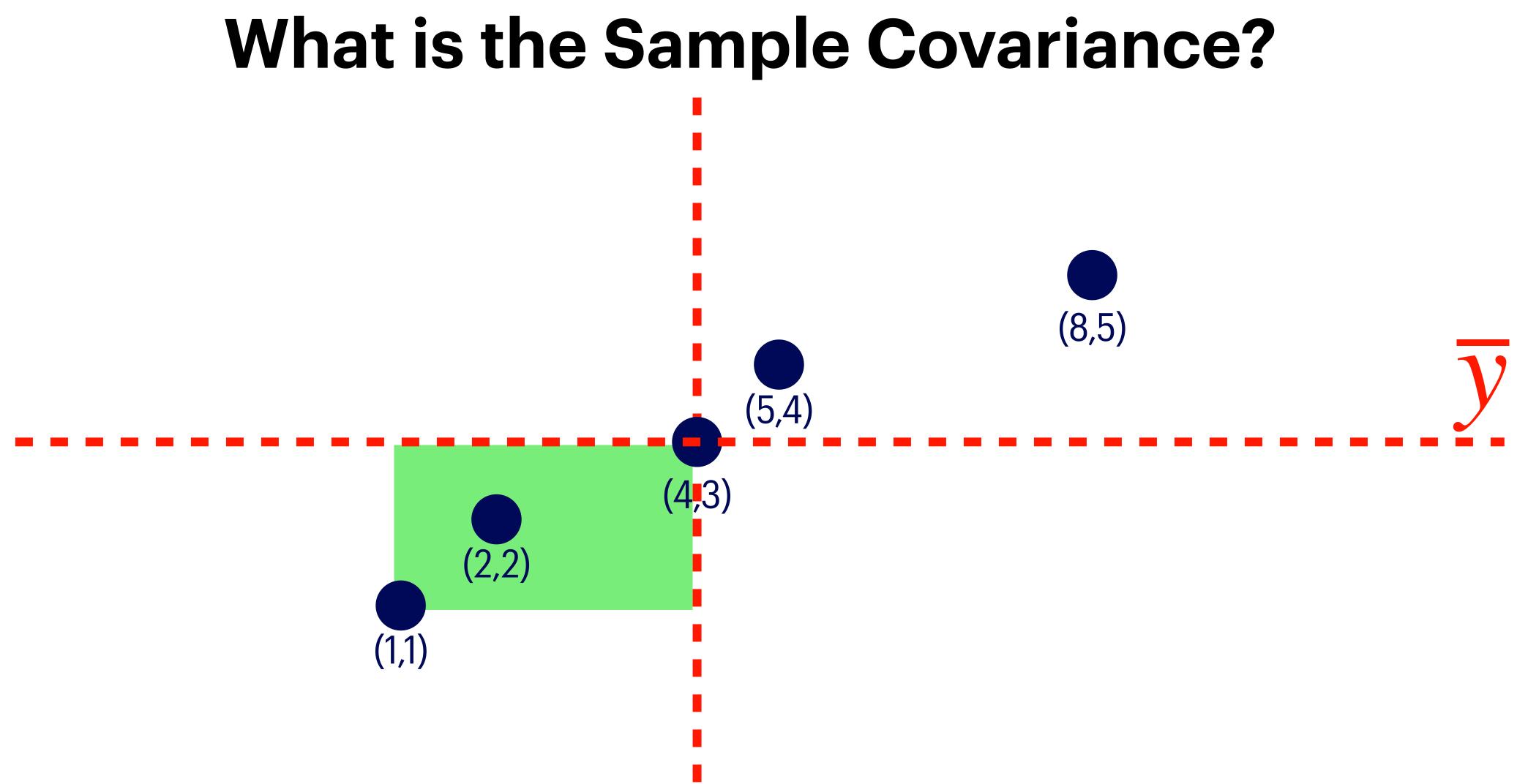






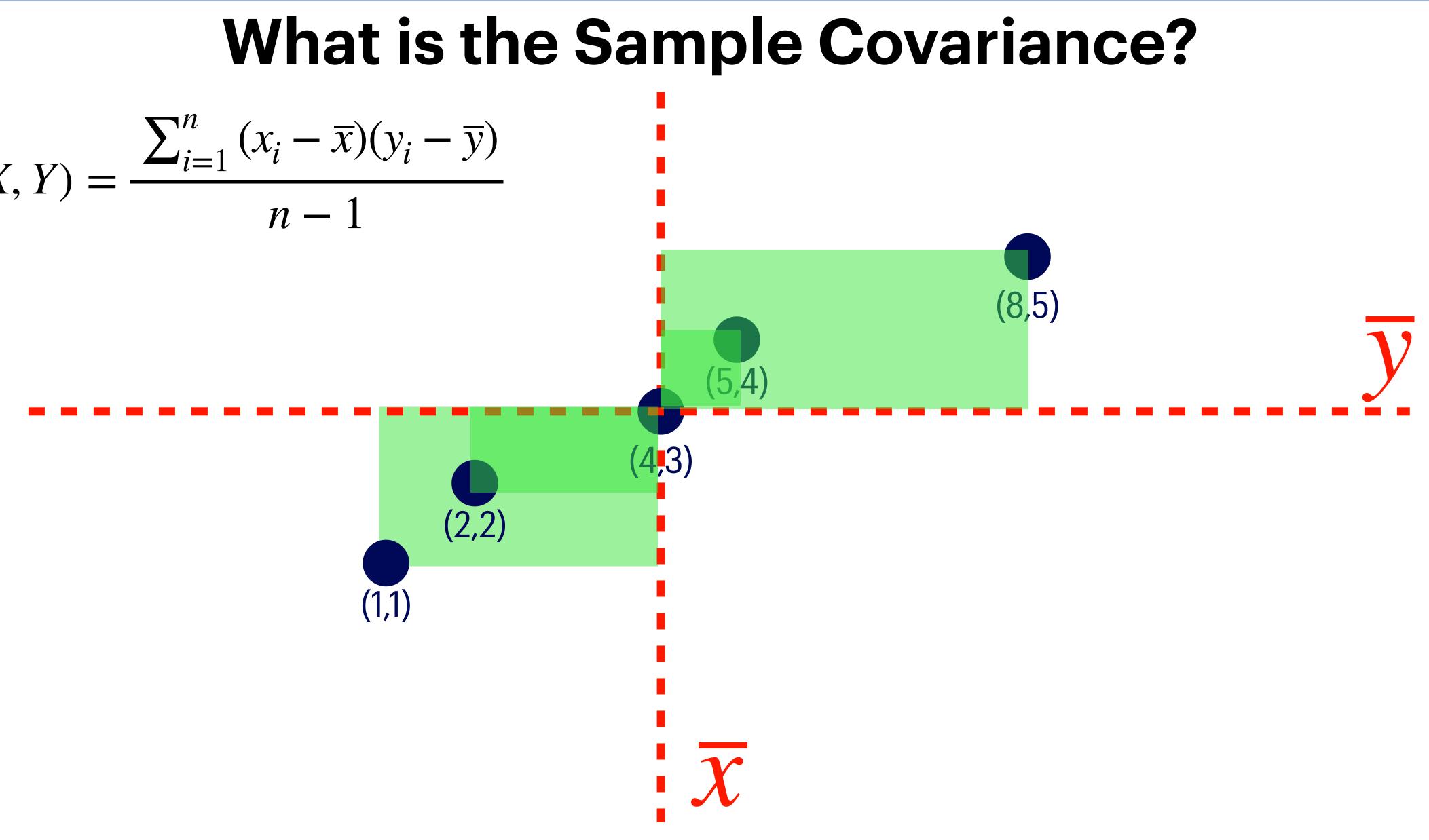


 $\overline{\mathcal{X}}$ 

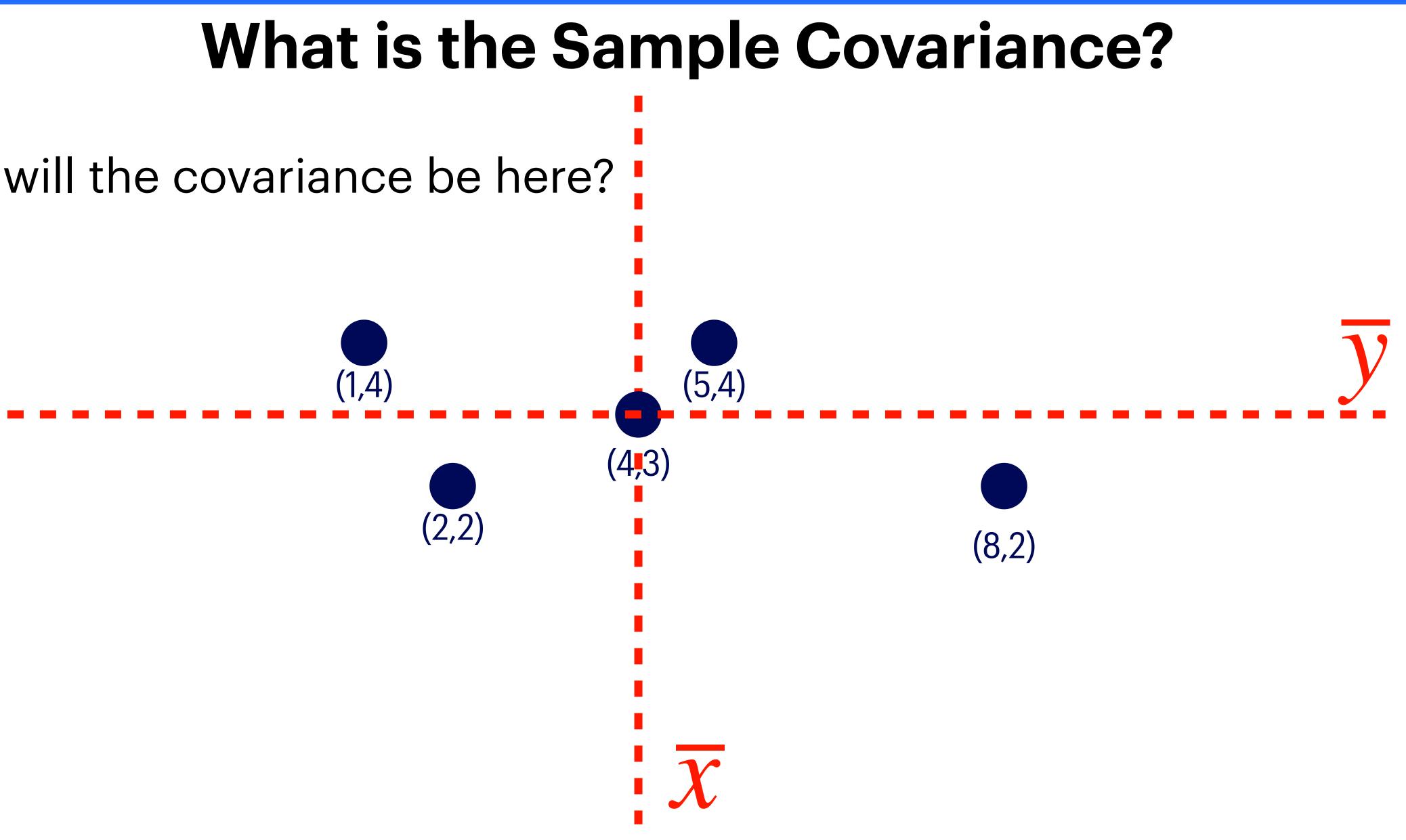


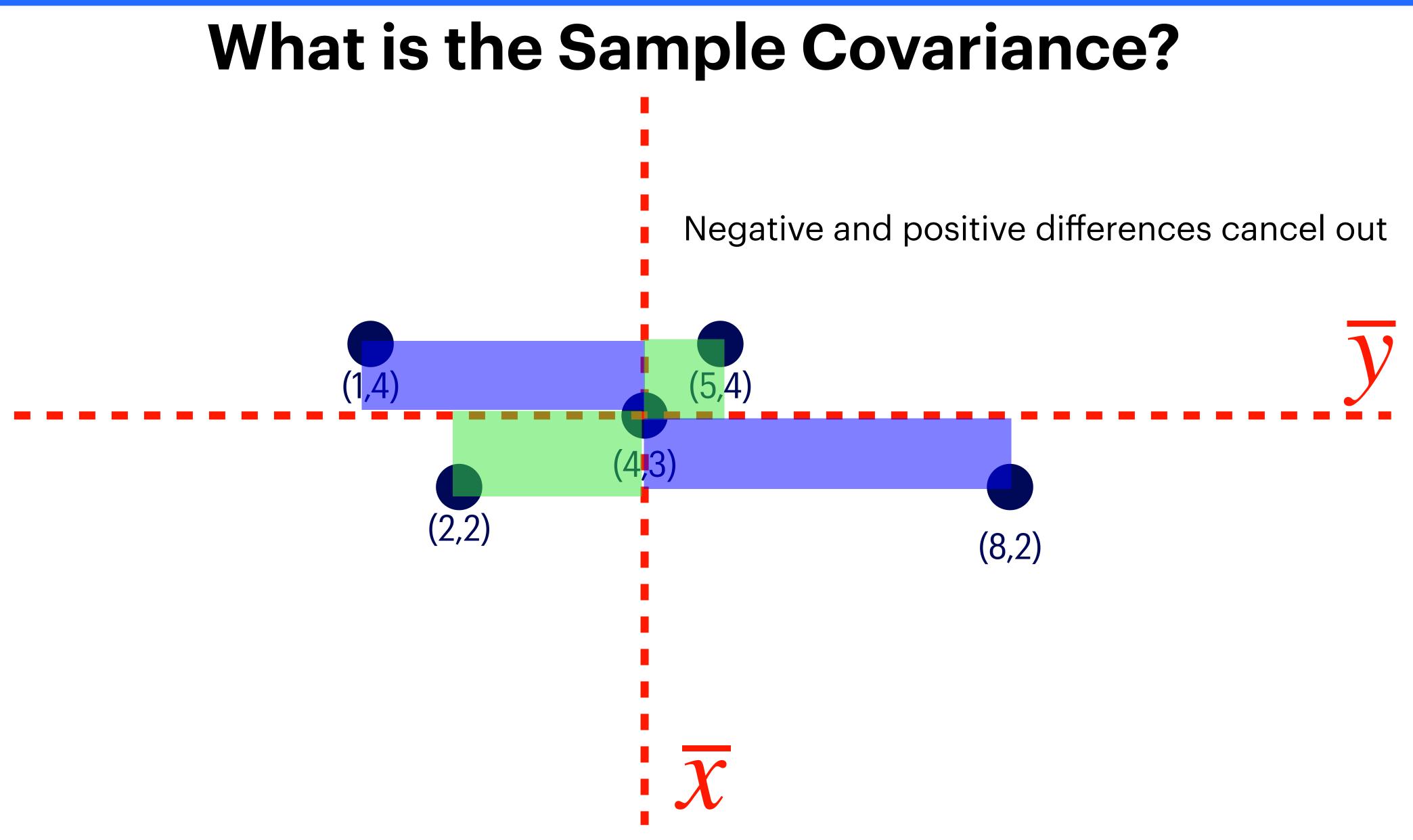
 ${\mathcal{X}}$ 

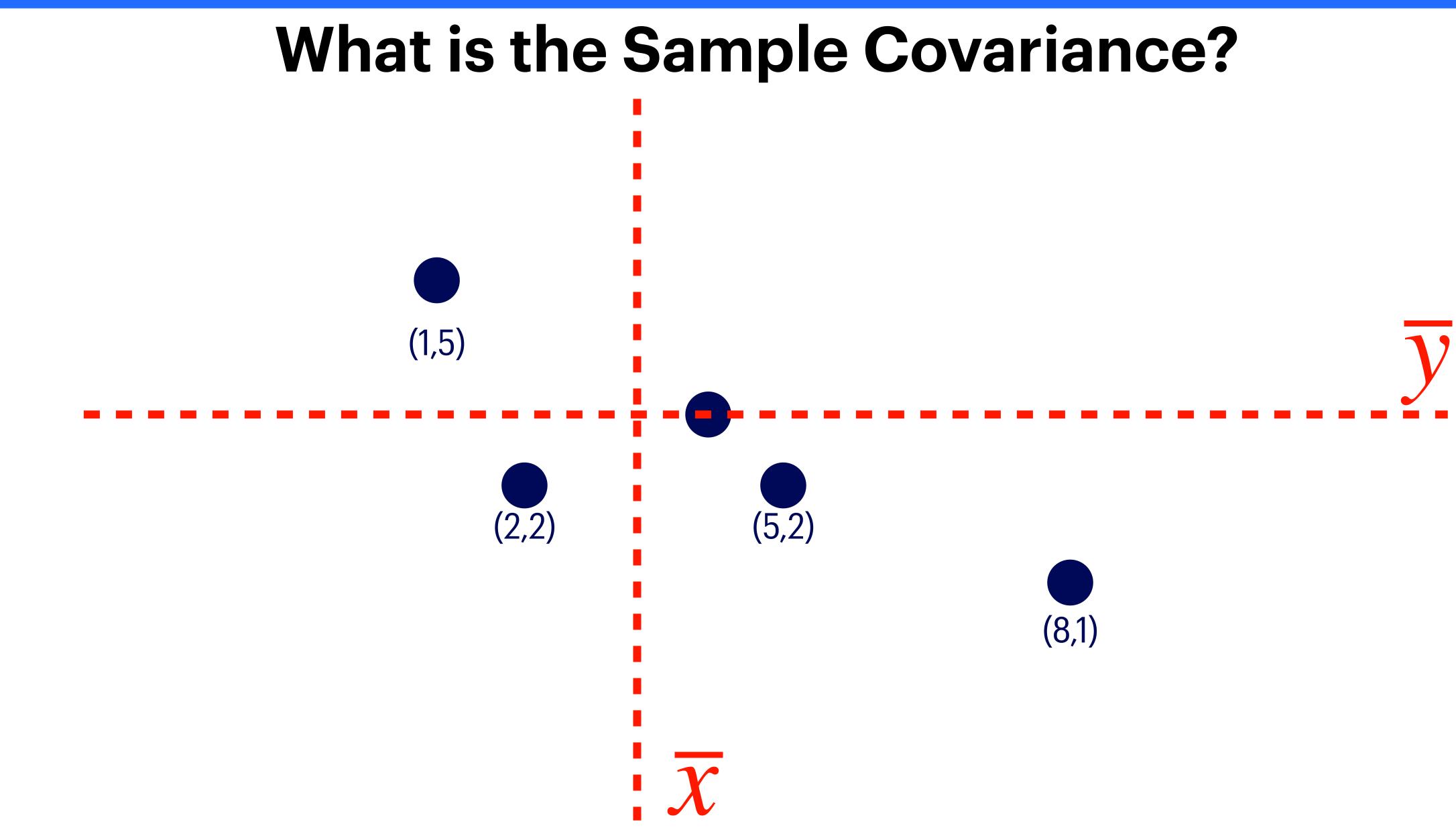
$$Cov(X, Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n - 1}$$

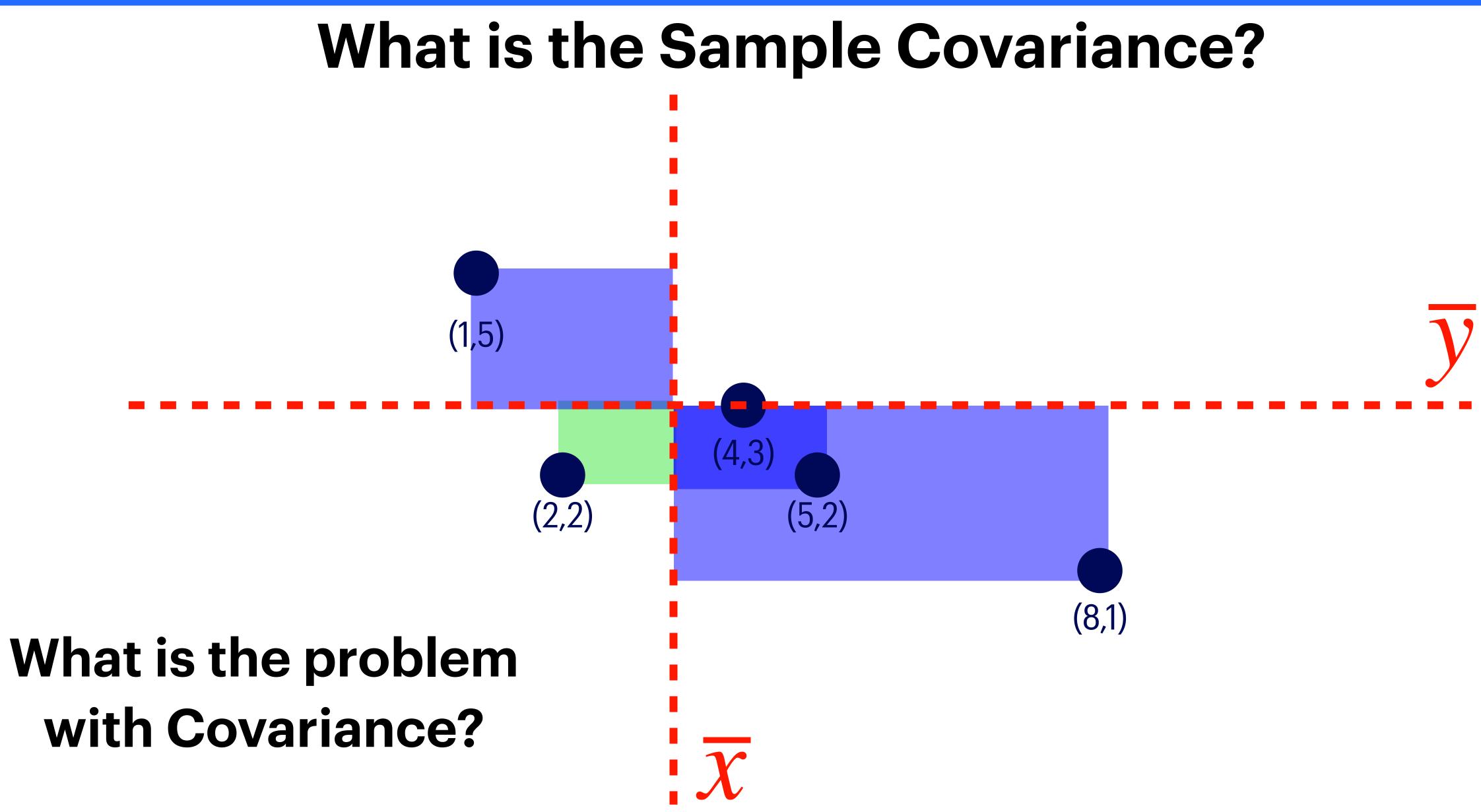


## •What will the covariance be here?









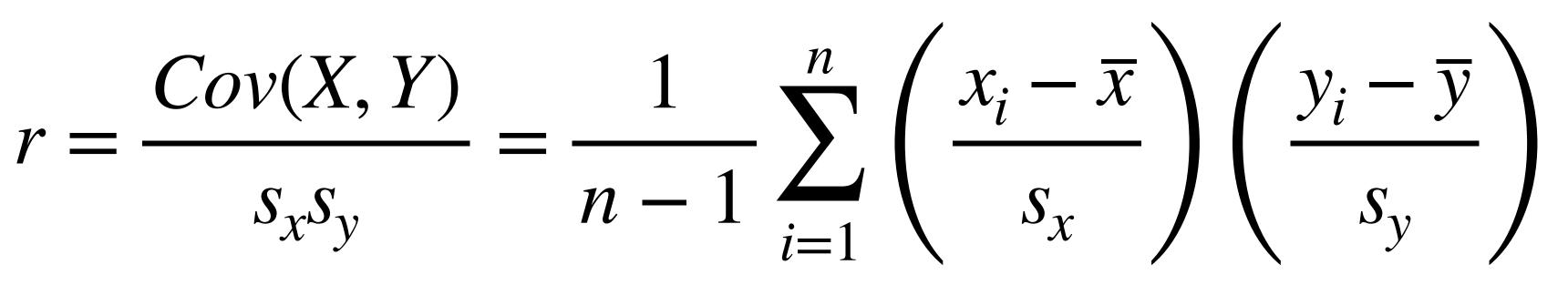
More Examples: http://digitalfirst.bfwpub.com/ stats\_applet/stats\_applet\_5\_correg.html

## What is the Sample Correlation?

# Cov(X, Y) = -

$$\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$n - 1$$

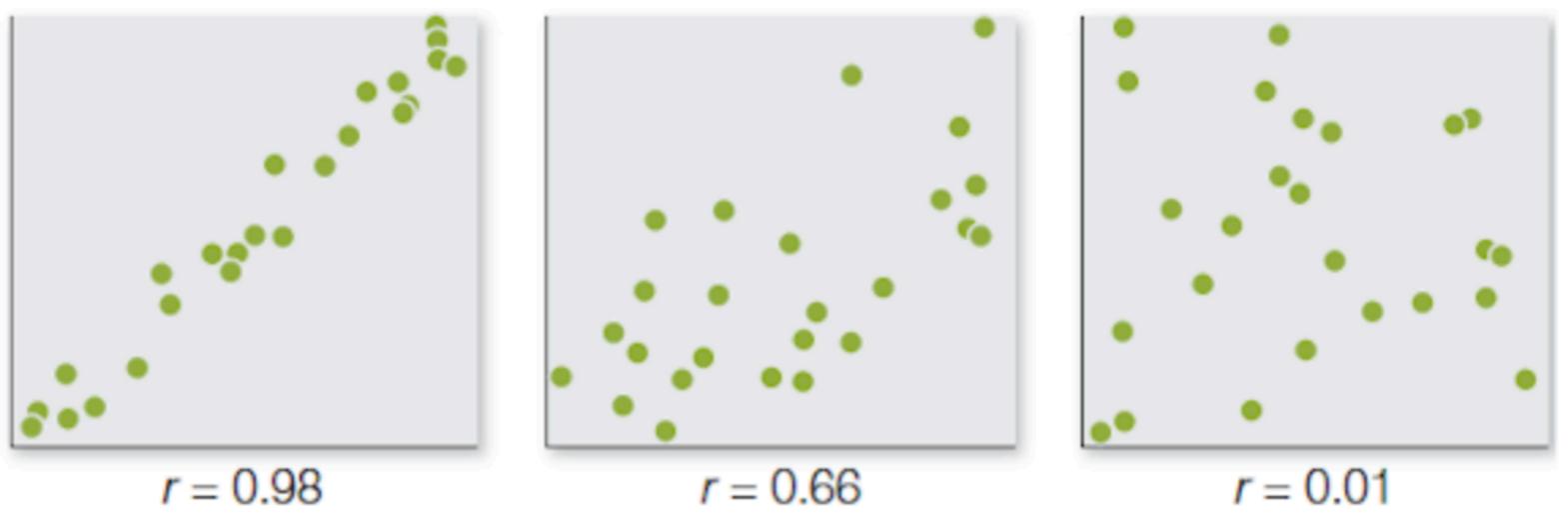


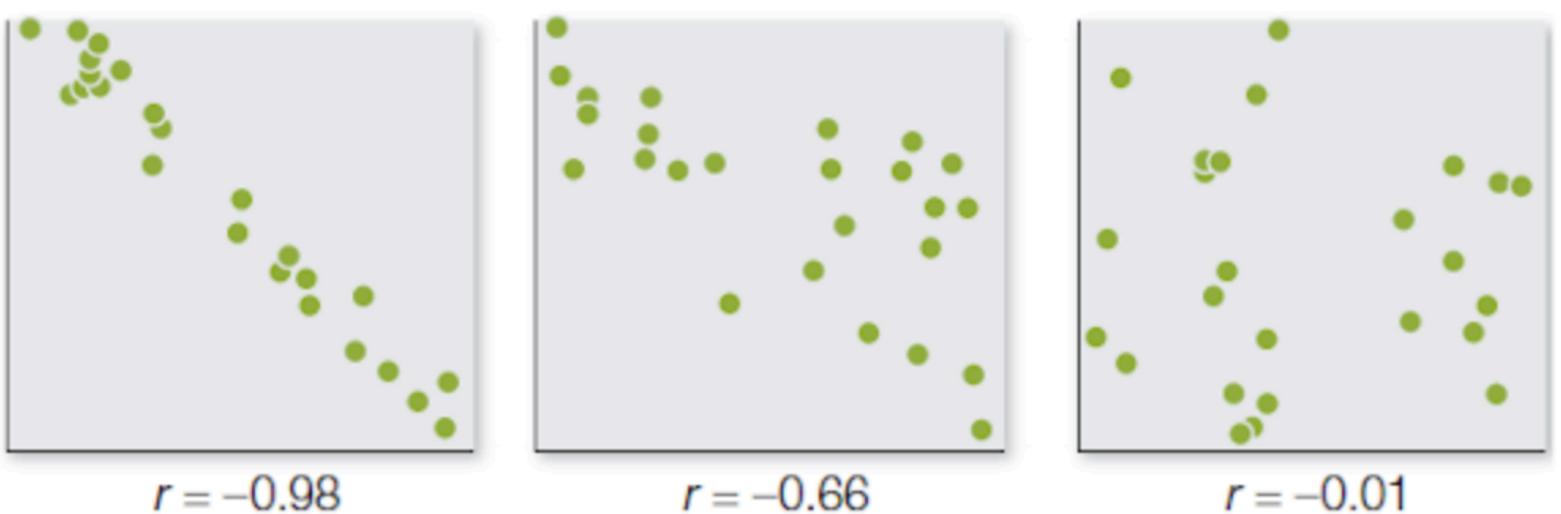
Note that *r* is a statistic

## What Does Correlation Measure?

## Direction Strength

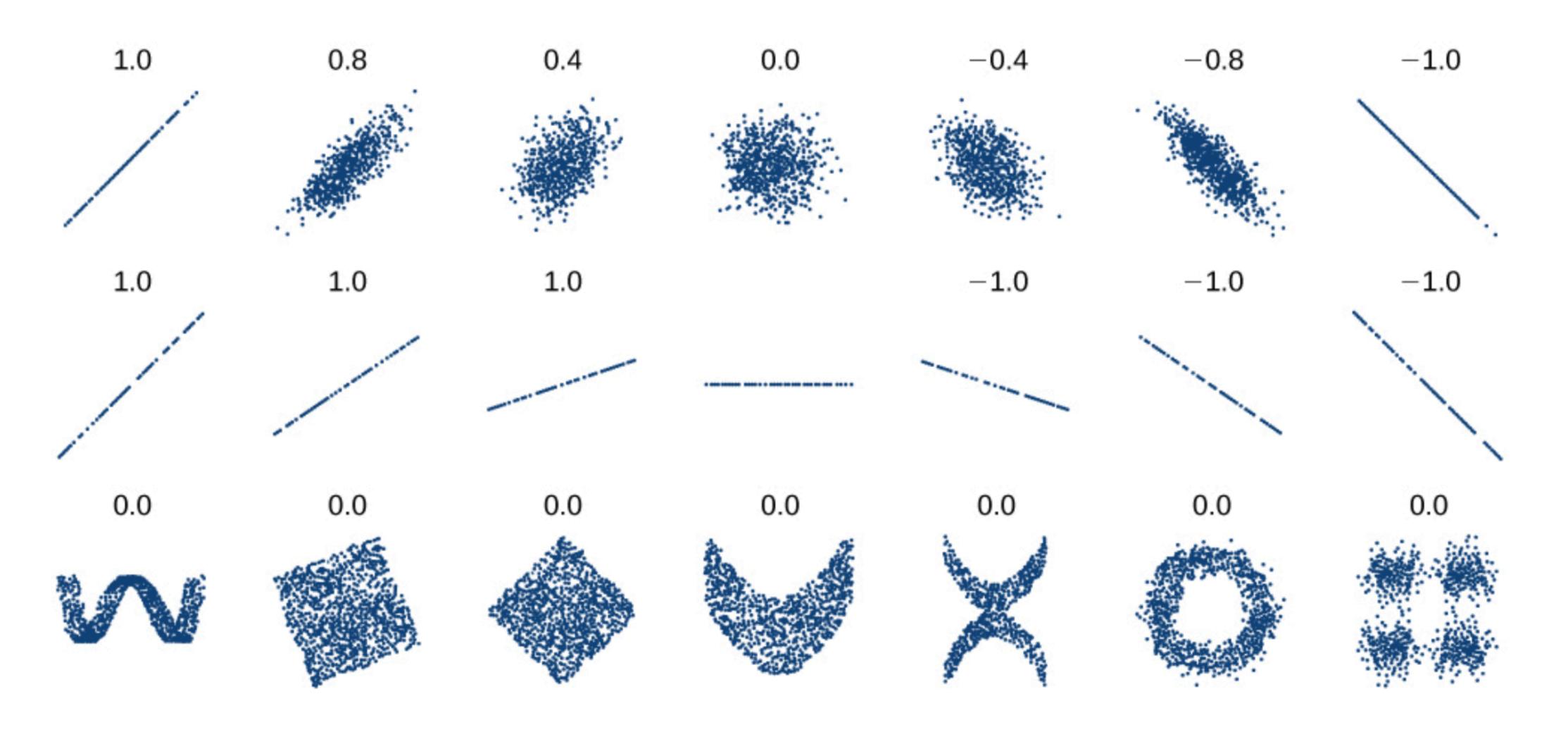
**Guess the Correlation** https:// www.rossmanchance. com/applets/2021/ guesscorrelation/ GuessCorrelation.html





r = -0.98

## **ALWAYS PLOT THE DATA**

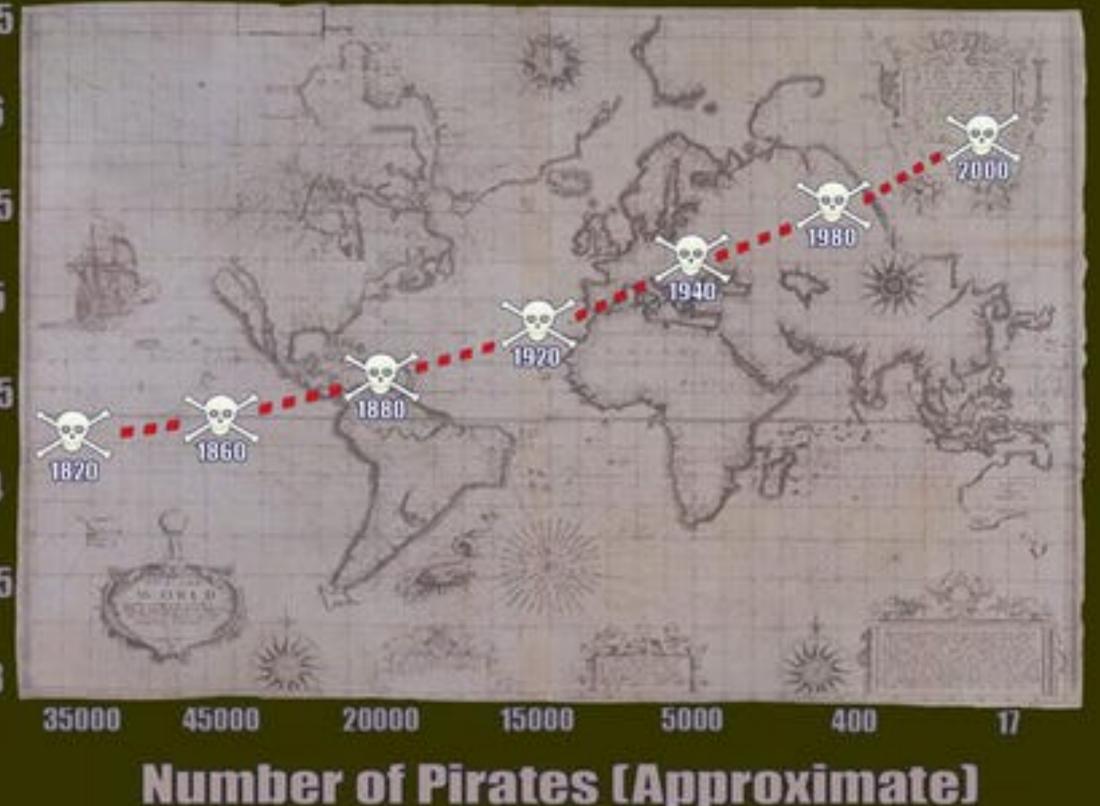


## What does correlation tell us about causation?

- •Is a lack of pirates causing global warming?
- Are Ice Cream Salesman responsible for increased drowning fatalities?

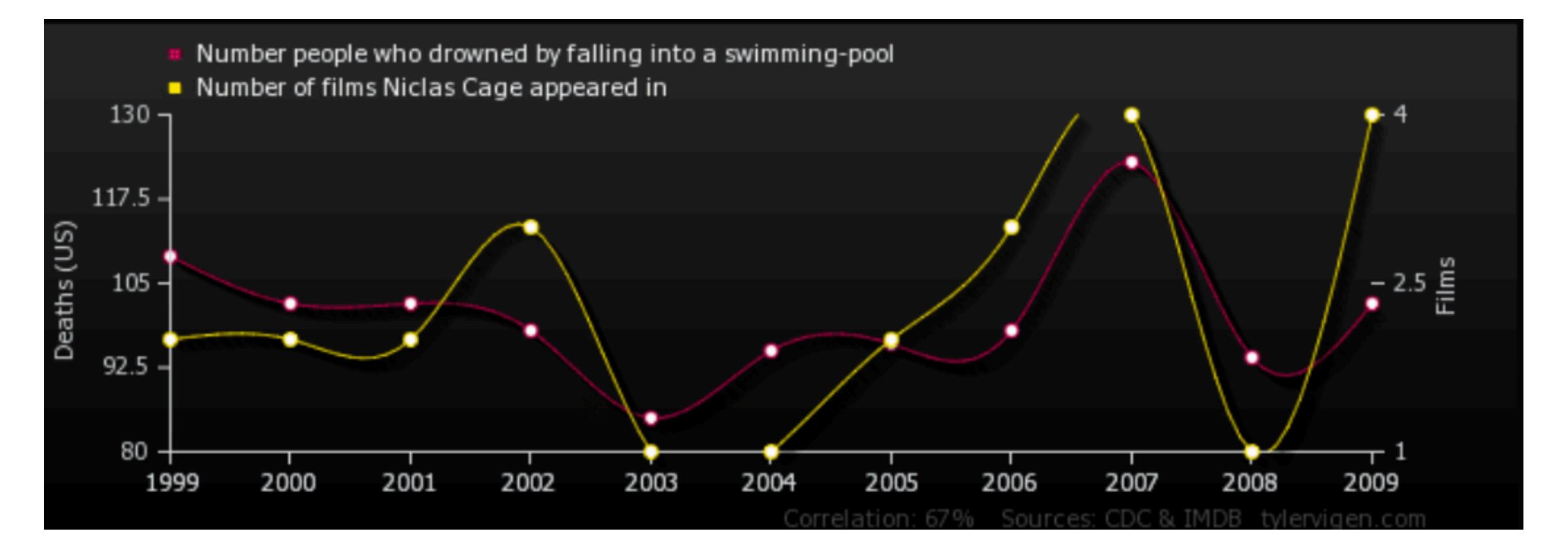
| -        | 16    |
|----------|-------|
| -        | 10.1  |
| -        |       |
| 60       | 16    |
|          | 10    |
|          |       |
| 50       | 151   |
| H        | 10.4  |
| 8        |       |
|          | 15    |
|          | 10    |
|          |       |
|          | 48.1  |
| 9        | 14.   |
|          |       |
| <u>5</u> |       |
| 85       | - 14  |
| 5        |       |
|          | -     |
| -        | 13.   |
| <u>.</u> |       |
|          |       |
| 1        | 13    |
| 23       | 1.000 |

## **Global Temperature Vs. Number of Pirates**

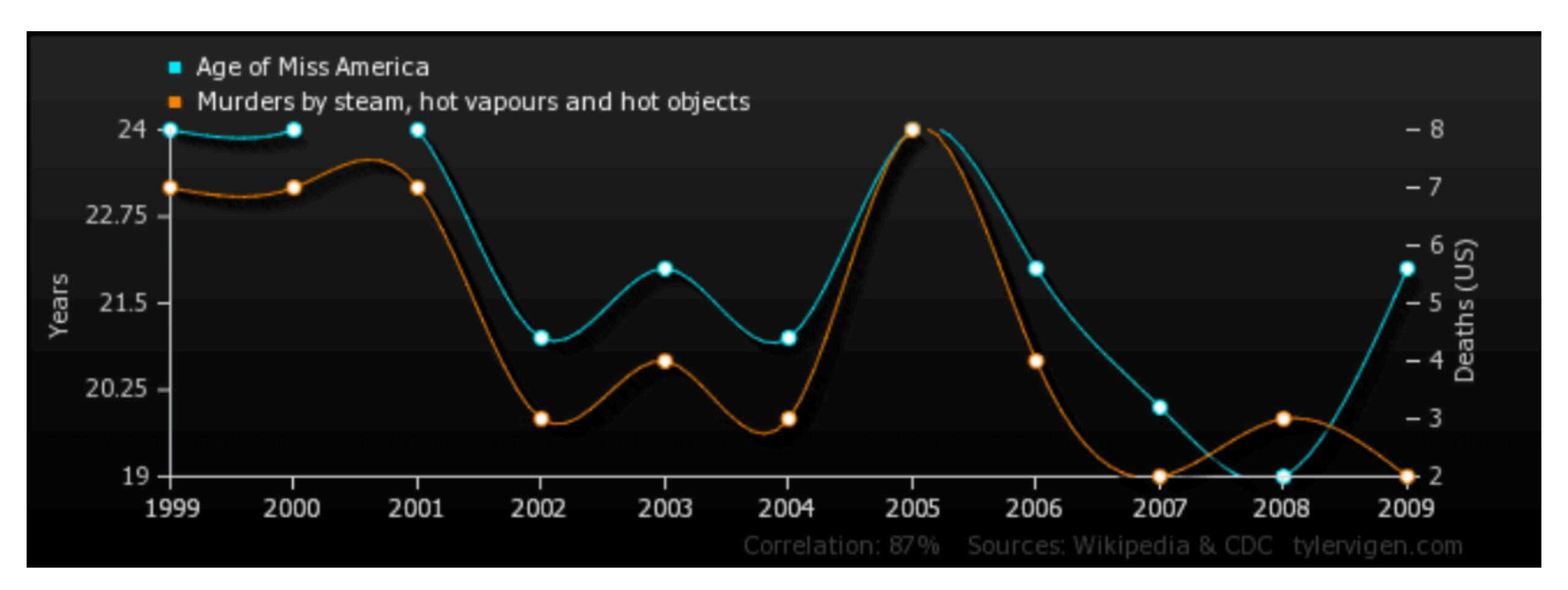




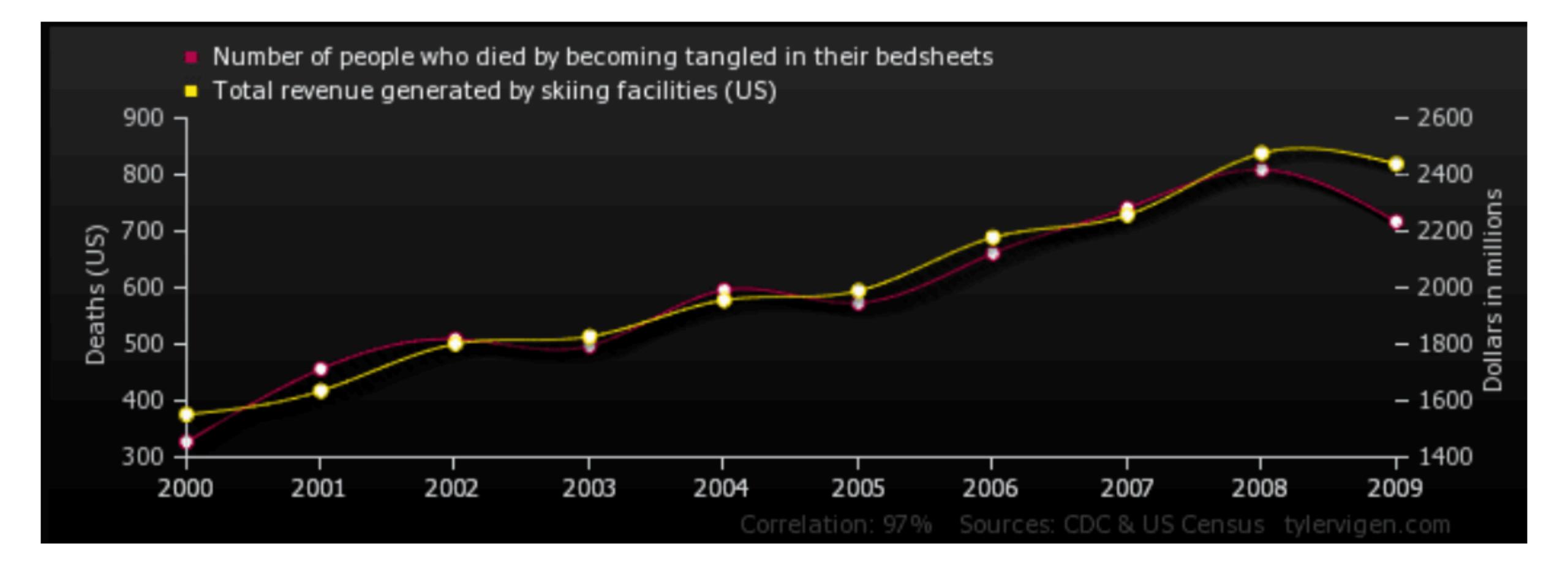
## **Correlation** $\neq$ **Causation Examples**



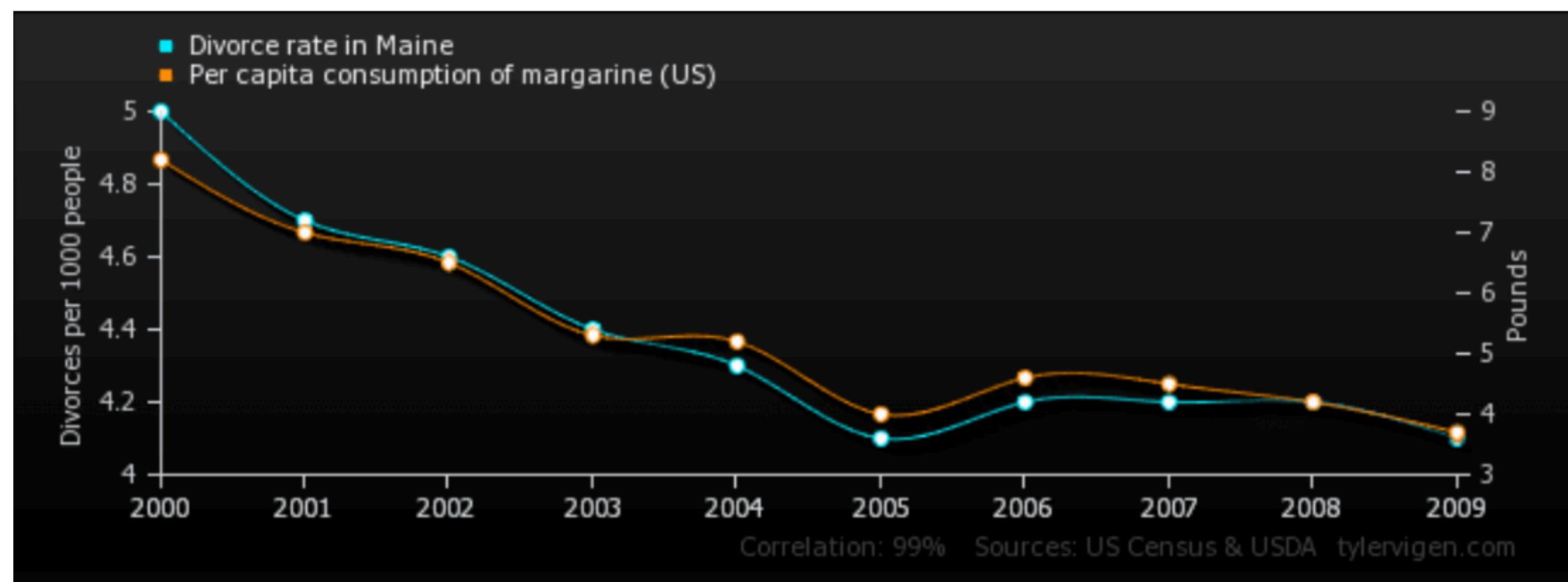
## **Correlation** $\neq$ **Causation Examples**



## **Correlation** $\neq$ **Causation Examples**

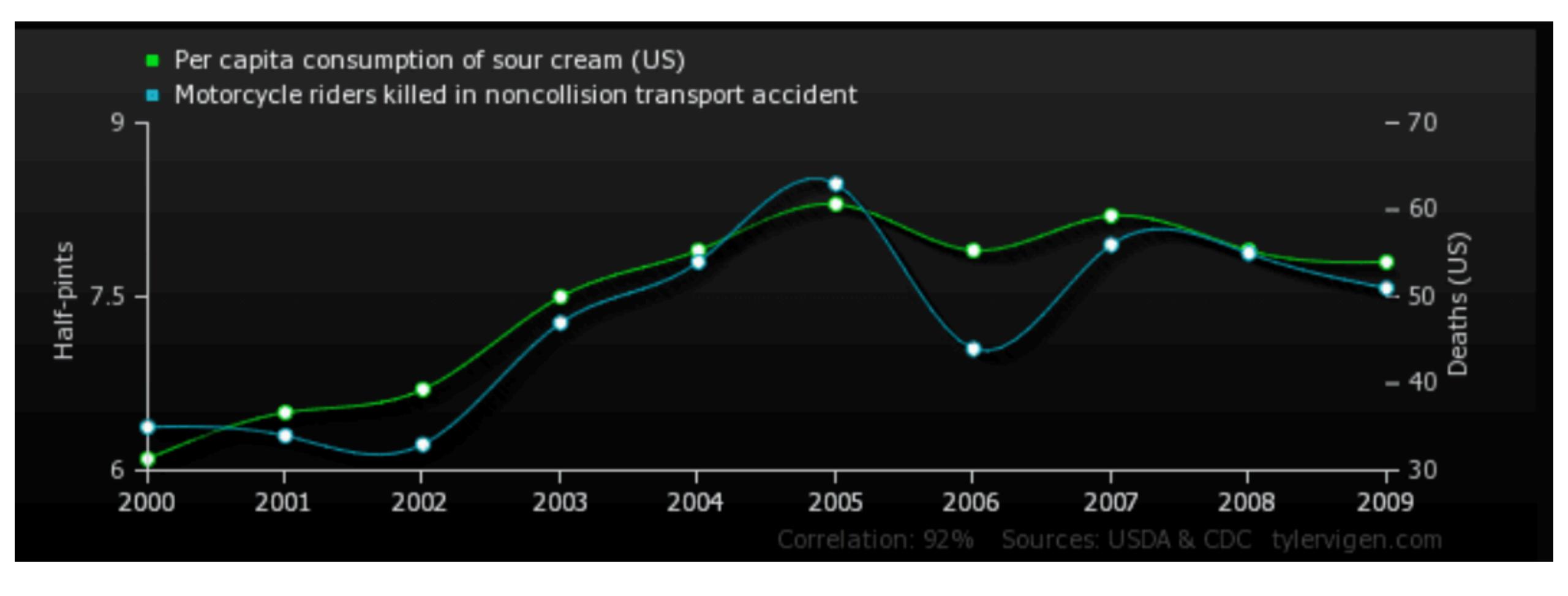


#### **Correlation** $\neq$ **Causation Examples**

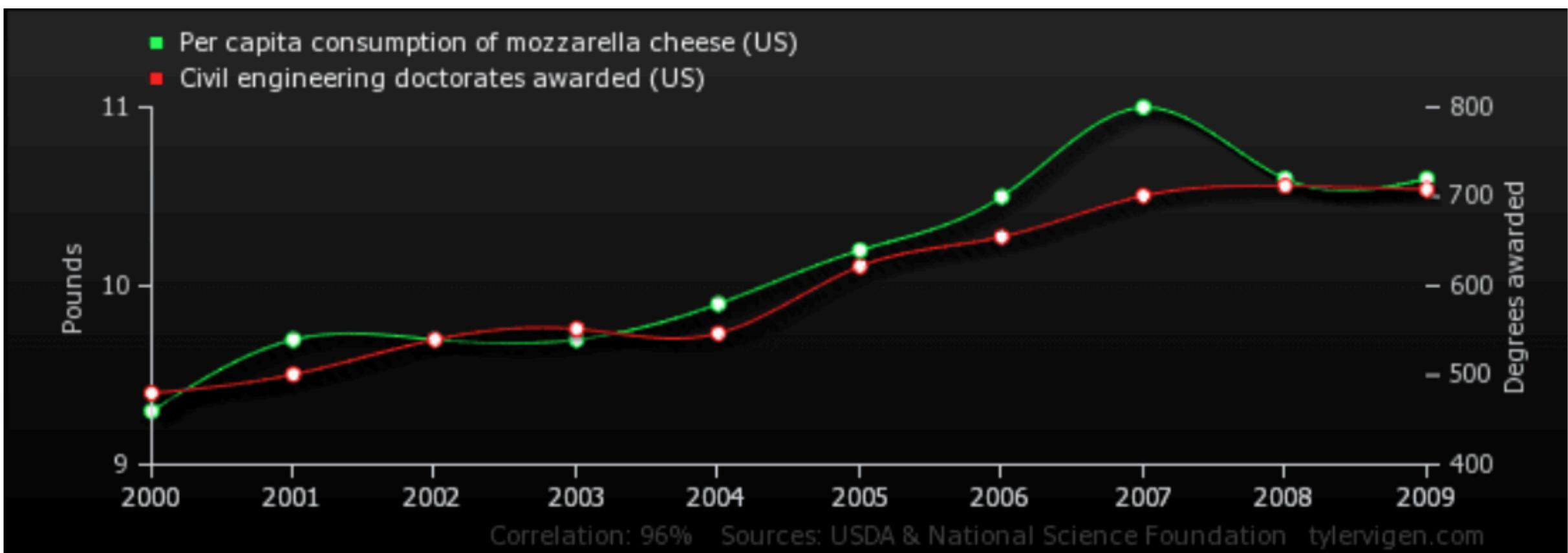




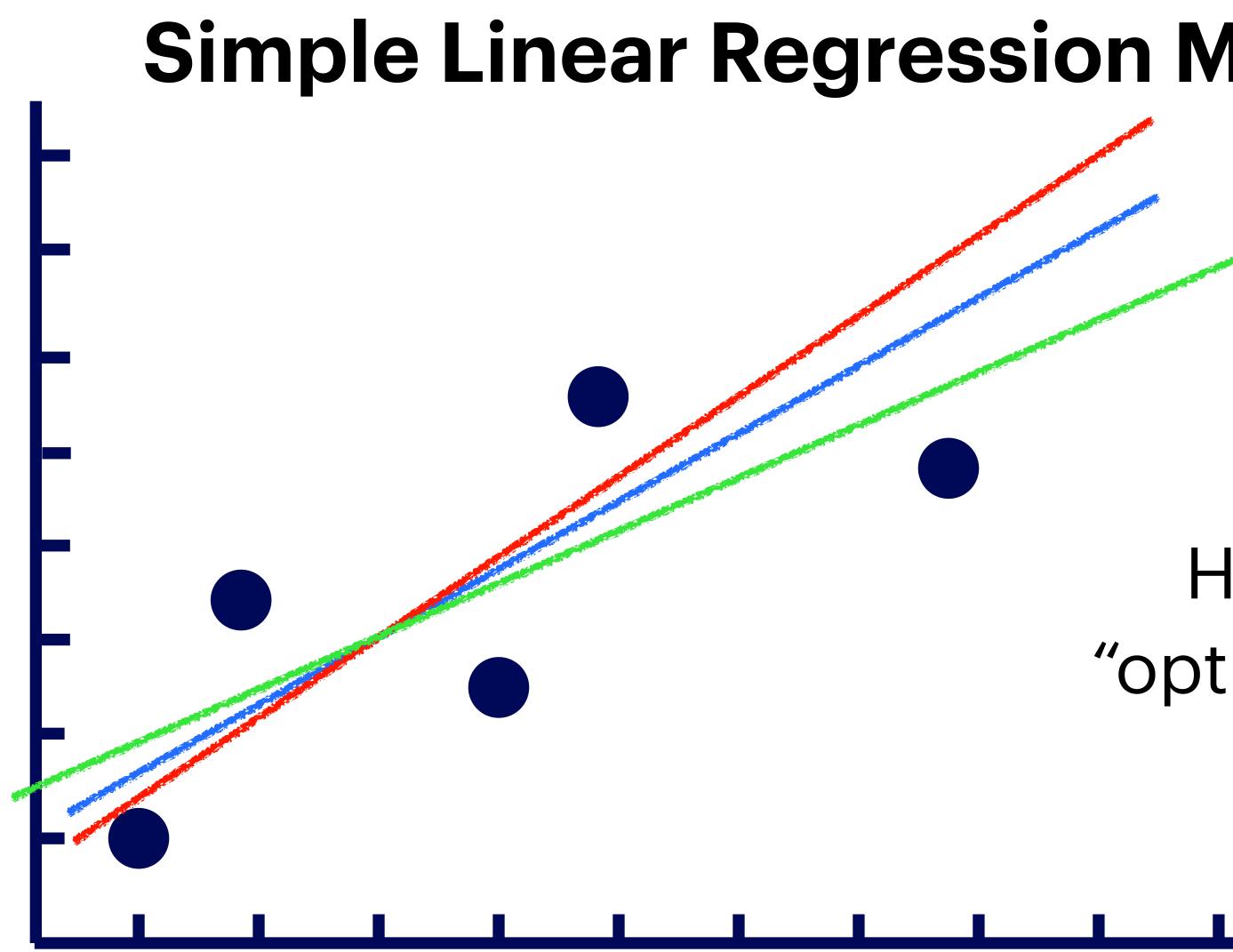
### **Correlation** $\neq$ **Causation Examples**



### **Correlation** $\neq$ **Causation Examples**



- How do we "prove" something is a causal relationship?
- **Experiments** will be discussed in more detail later (unit 3)



# **Simple Linear Regression Model** $y = \beta + \beta_1 x + \epsilon$ $\epsilon \sim \text{Normal}(0,\sigma^2)$

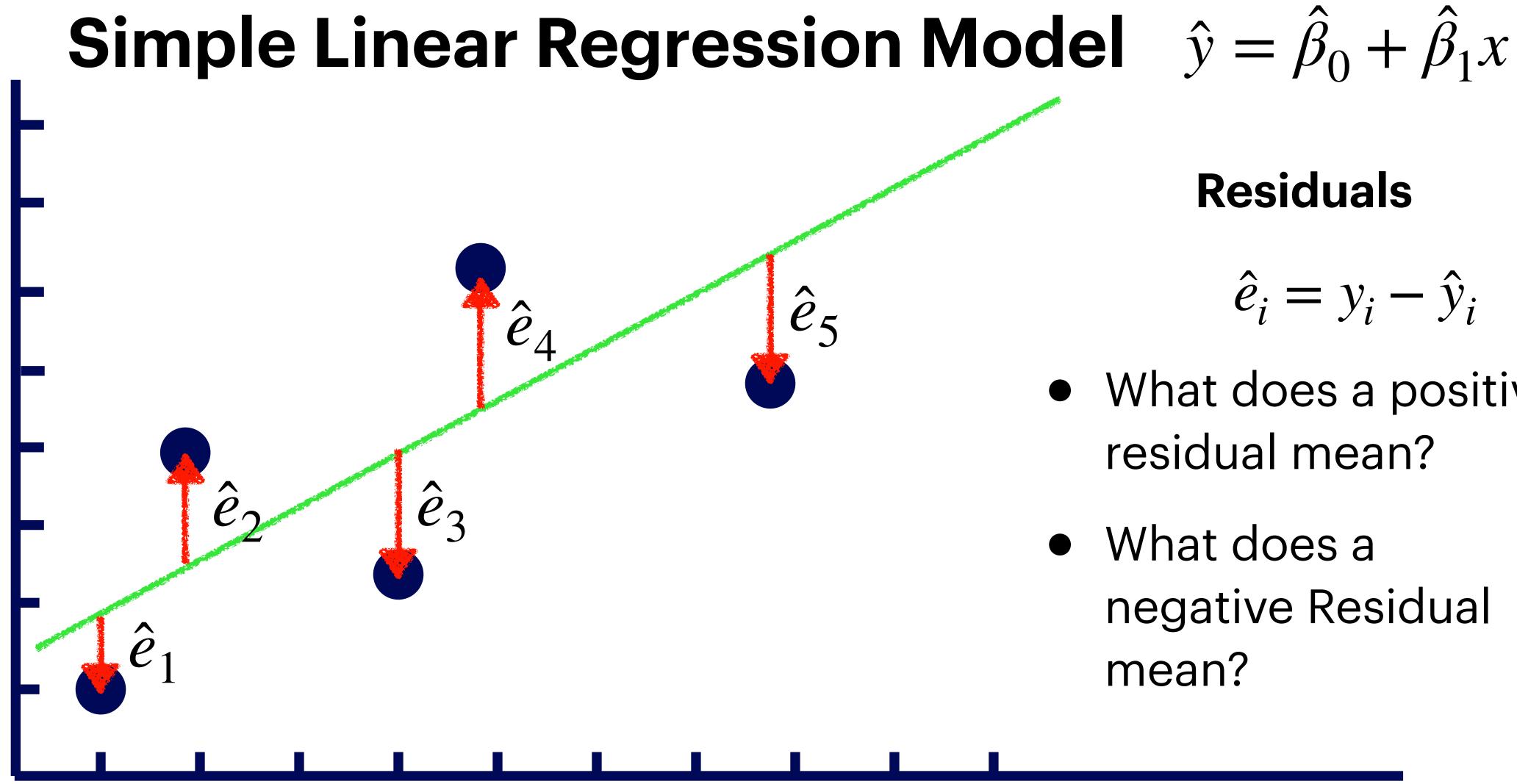
# How do we choose the "optimal" line from the data?

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_i$$





 $\hat{e}_5$ 

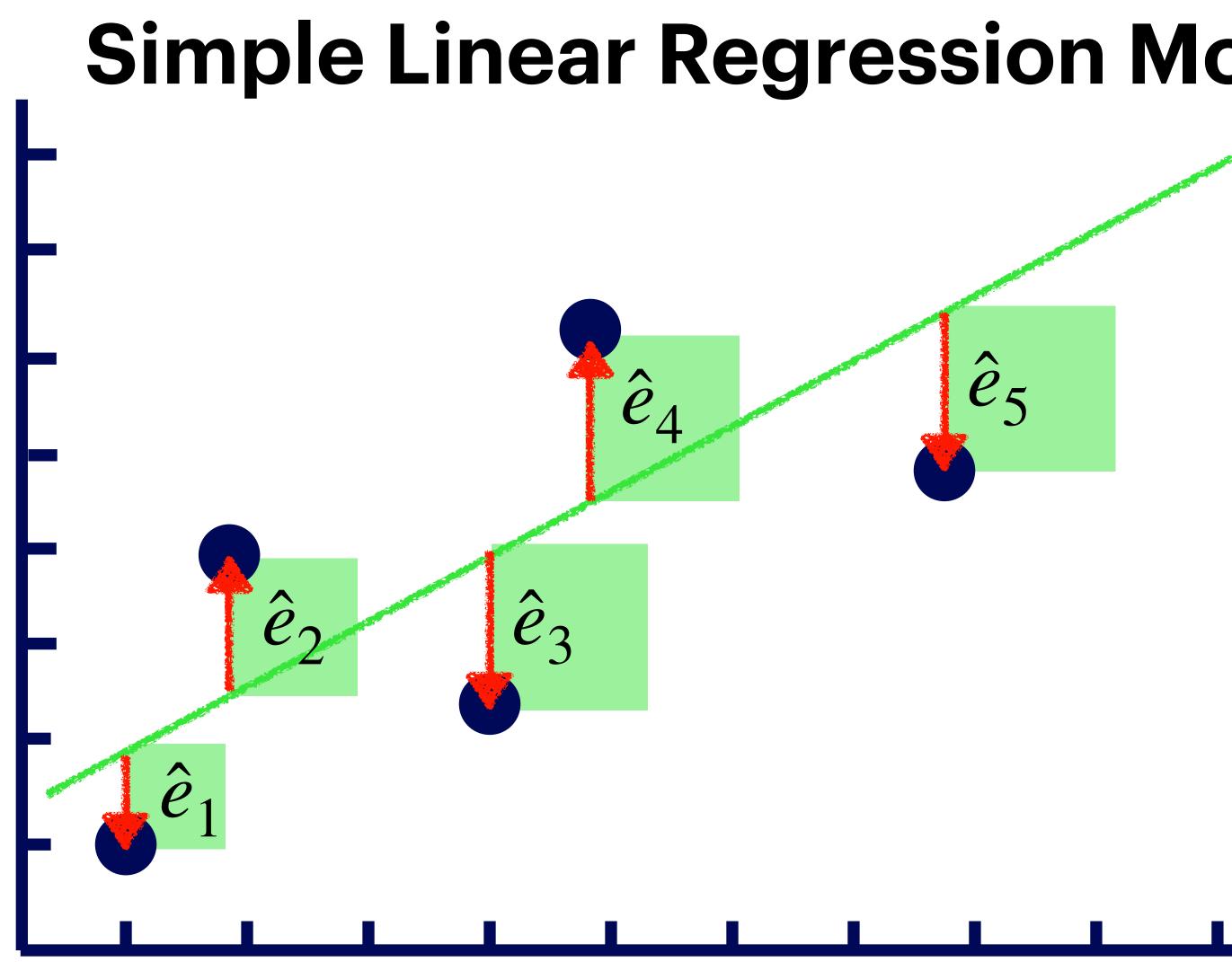


#### **Residuals**

$$\hat{e}_i = y_i - \hat{y}_i$$

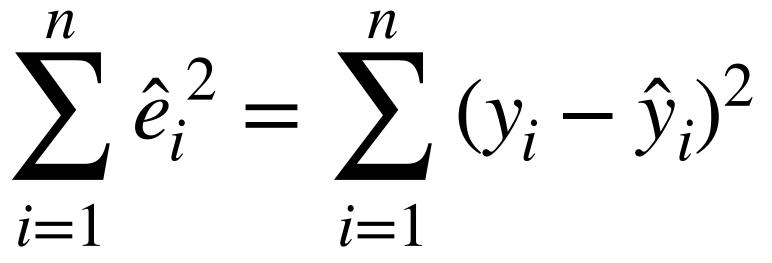
- What does a positive residual mean?
- What does a negative Residual mean?

 $\hat{e}_{5}$ 



# **Simple Linear Regression Model** $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

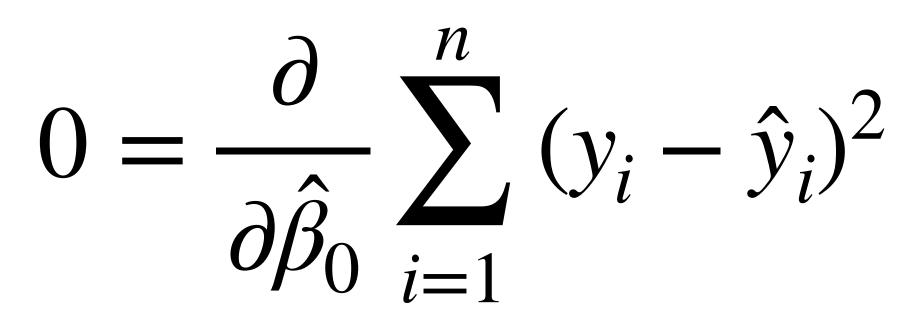
#### **Sum of Square** Residuals

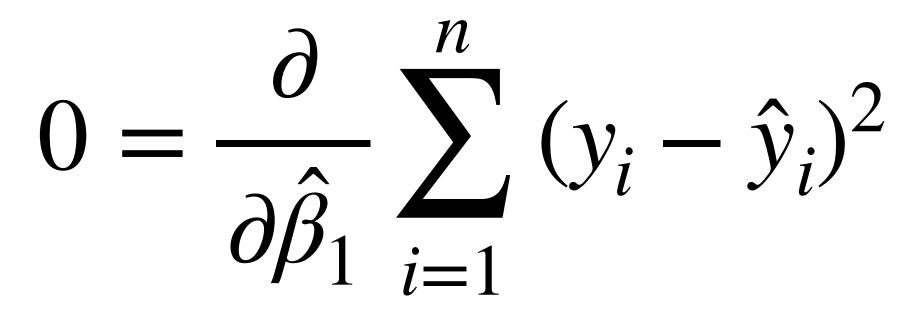


Want to minimize sum of square residuals w.r.t  $\hat{\beta}_0$ , and  $\hat{\beta}_1$  to get linear model





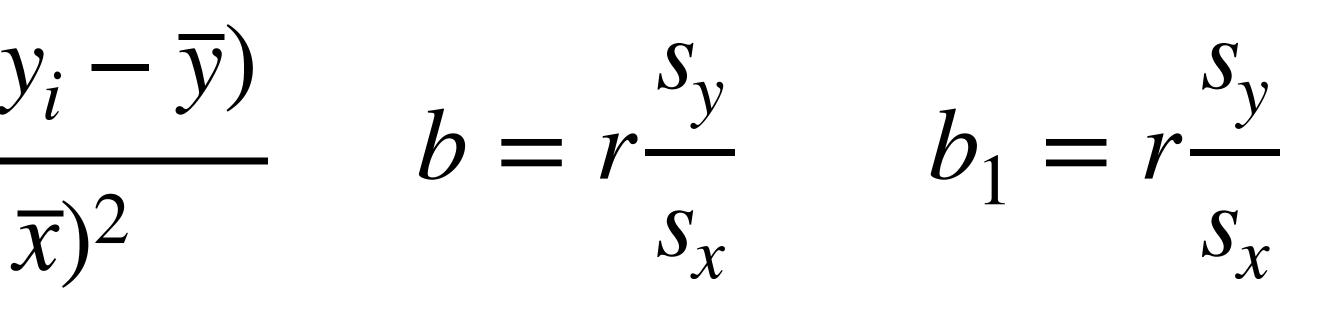




#### https://www.desmos.com/calculator/lywhybetzt

$$\hat{\beta}_{1} = r \frac{s_{y}}{s_{x}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i})}{\sum_{i=1}^{n} (x_{i} - \bar{x})}$$

#### Formulas



# $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$ $a = \overline{y} - b\overline{x}$ $b_0 = \overline{y} - b_1 \overline{x}$

 $\overline{y} = a + b\overline{x}$ 

 $\overline{y} = \hat{\beta}_0 + \hat{\beta}_1 \overline{x}$ 

Don't forget that our line of best fit will always pass through  $(\overline{x}, \overline{y})$ 

# $\hat{\beta}_0$ Represents the average value of "y" when "x" is zero. This is often meaningless

# $\hat{\beta}_1~$ Represents the average increase in "y" for a **one unit** change in "x". Think Rise/One

#### **Making Predictions:** What does a prediction mean?

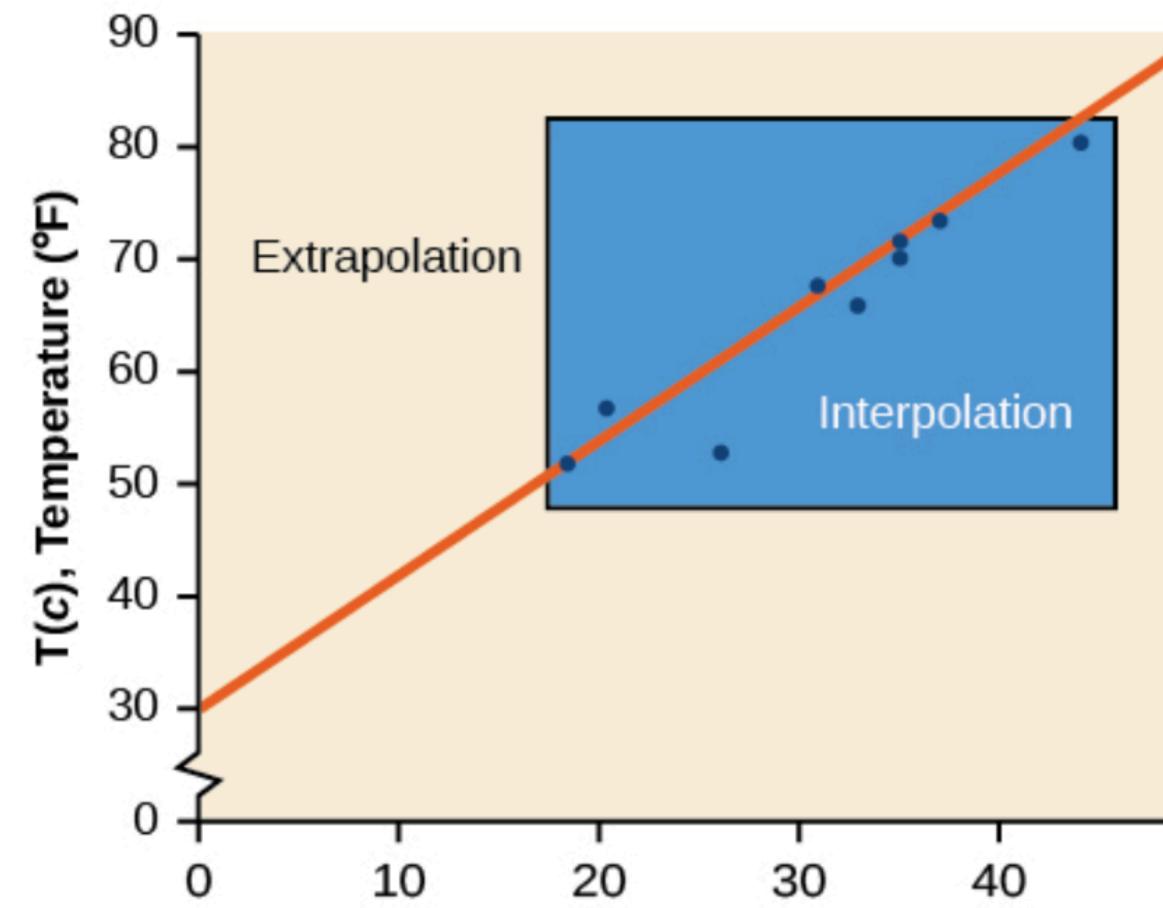
Average value of y given value of x. "Using our model we would predict an average temperature of Y for x Cricket Chirps in 15 seconds.

#### What is extrapolation?

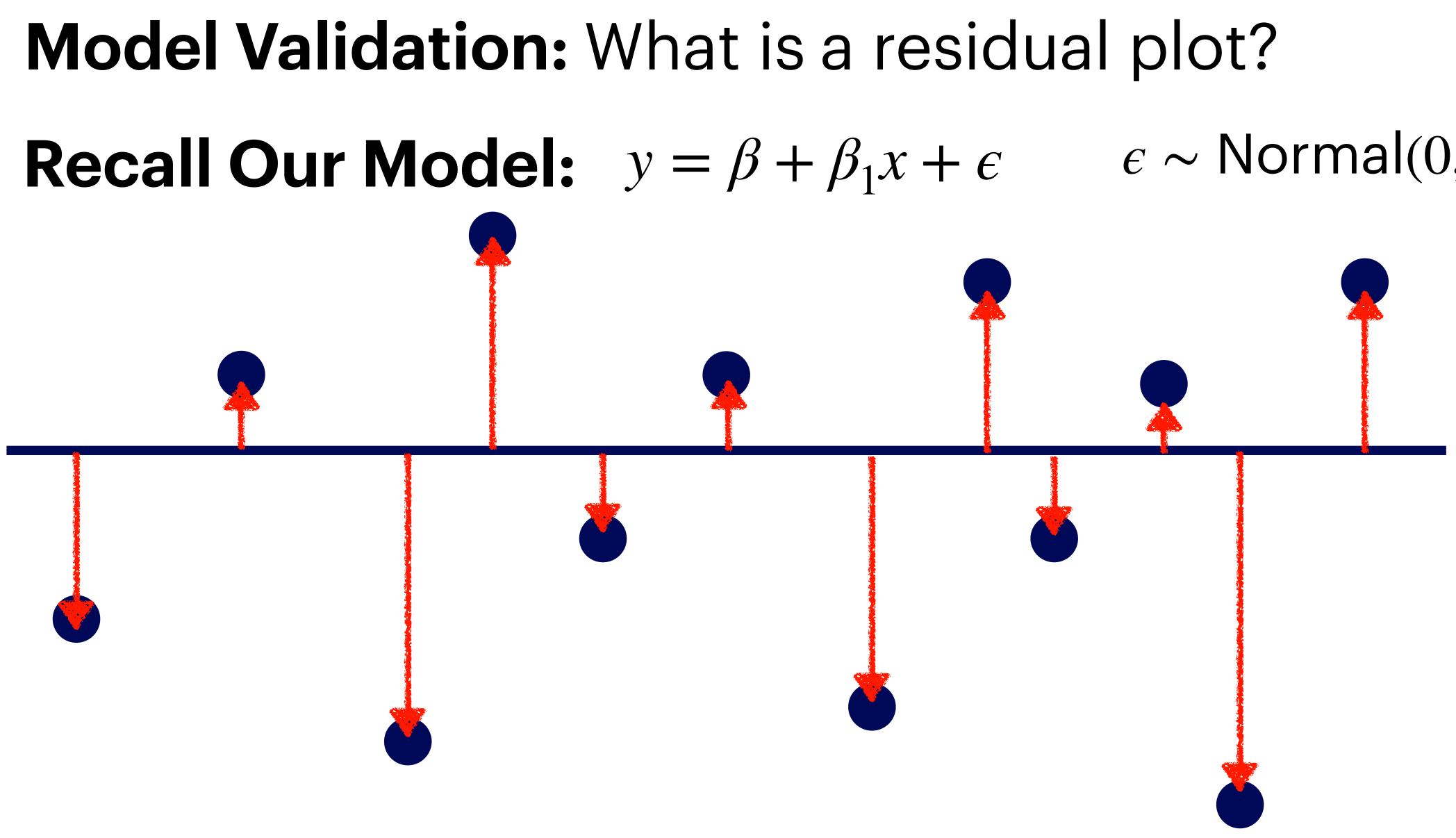
What does 0 cricket chirps in 15 seconds tell us?

#### **BIVARIATE QUANTITATIVE DATA**

Cricket Chirps vs. Temperature



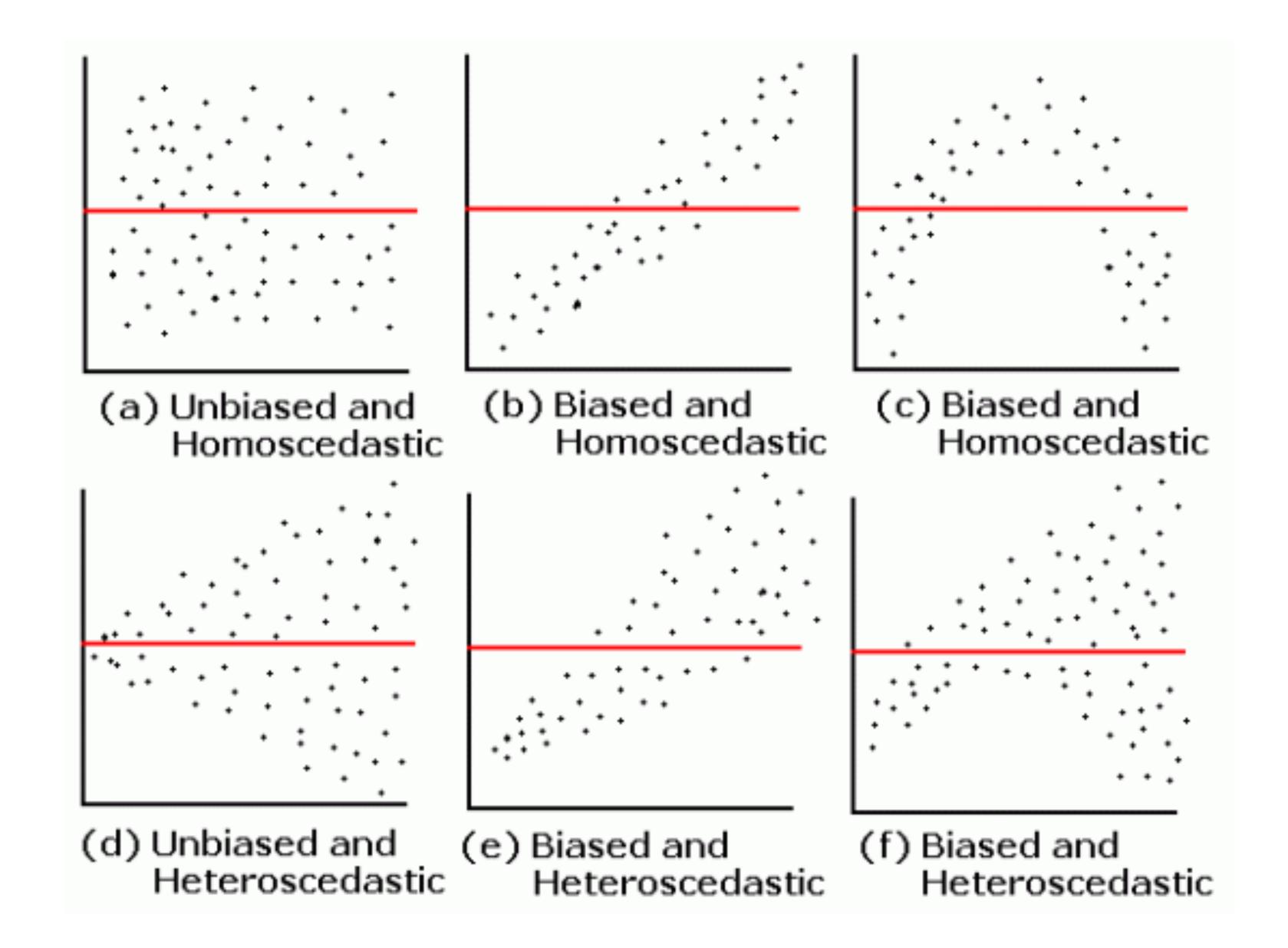


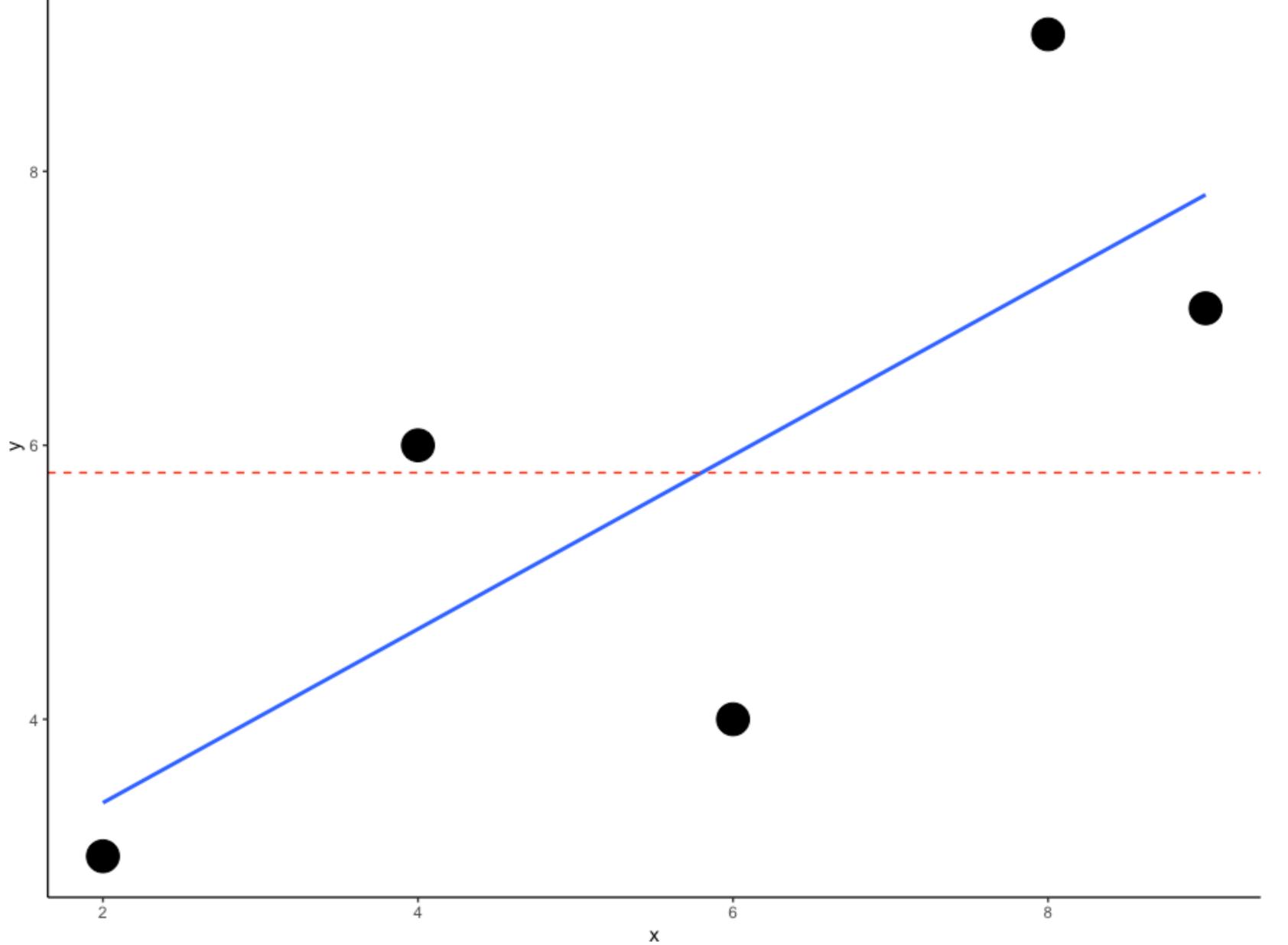


#### $\epsilon \sim \text{Normal}(0,\sigma^2)$



#### **RESIDUAL PLOTS**

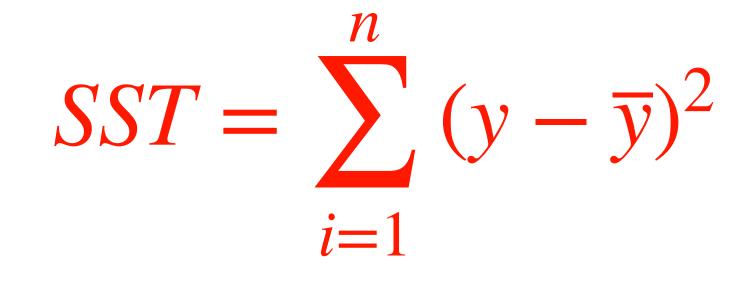


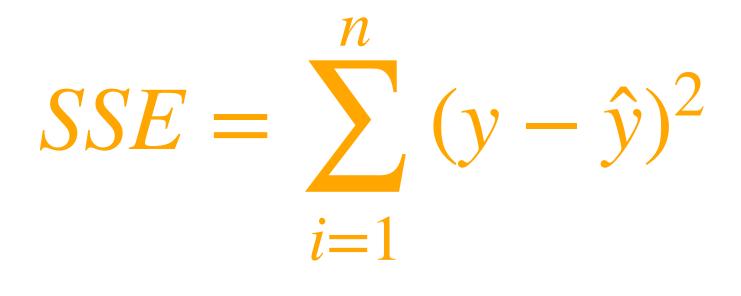


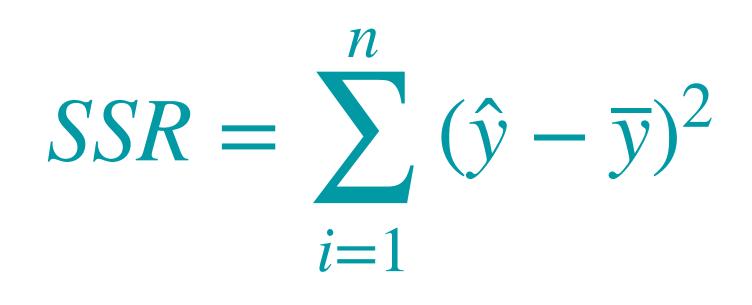
#### **Model Validation:** What is $r^2$ ?

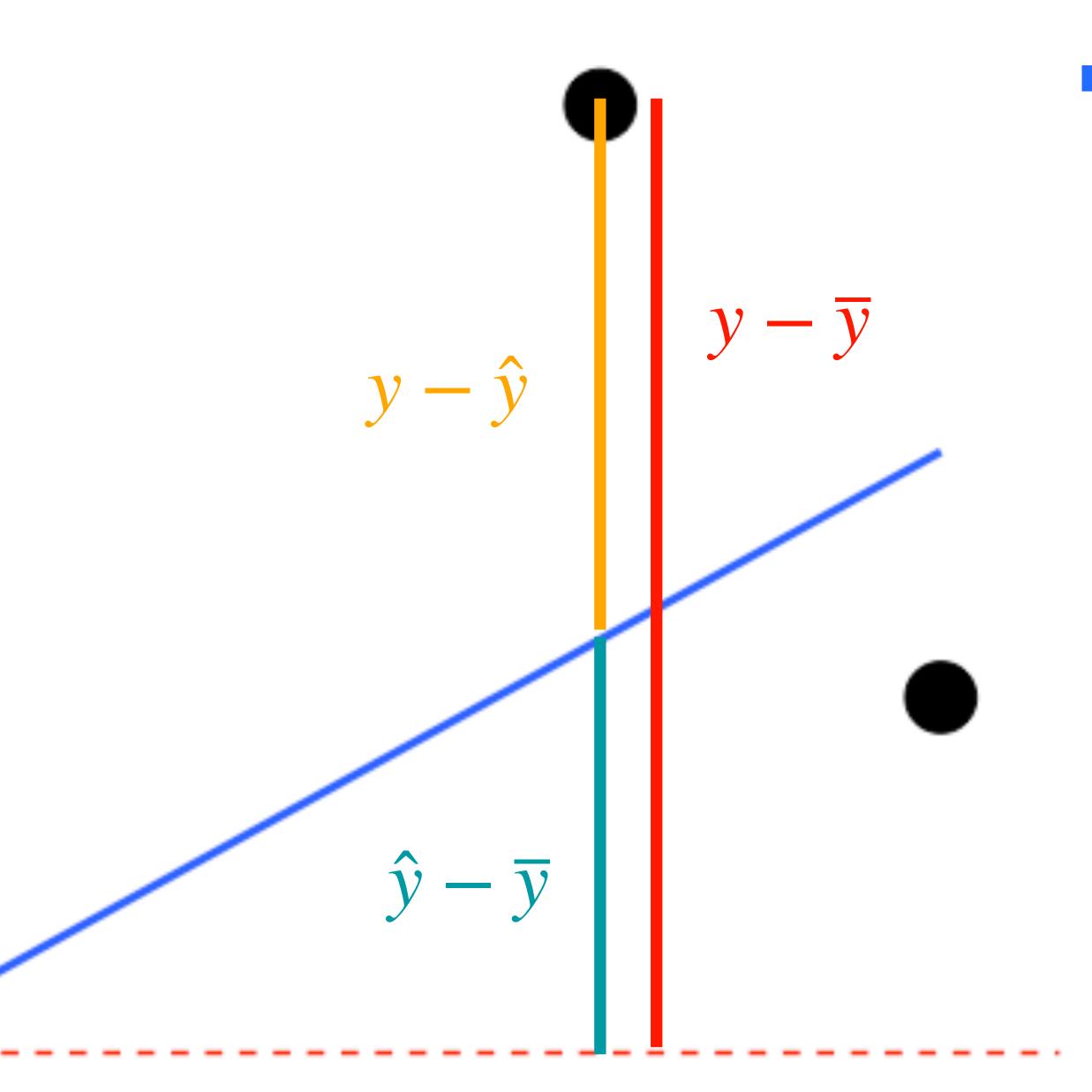
V

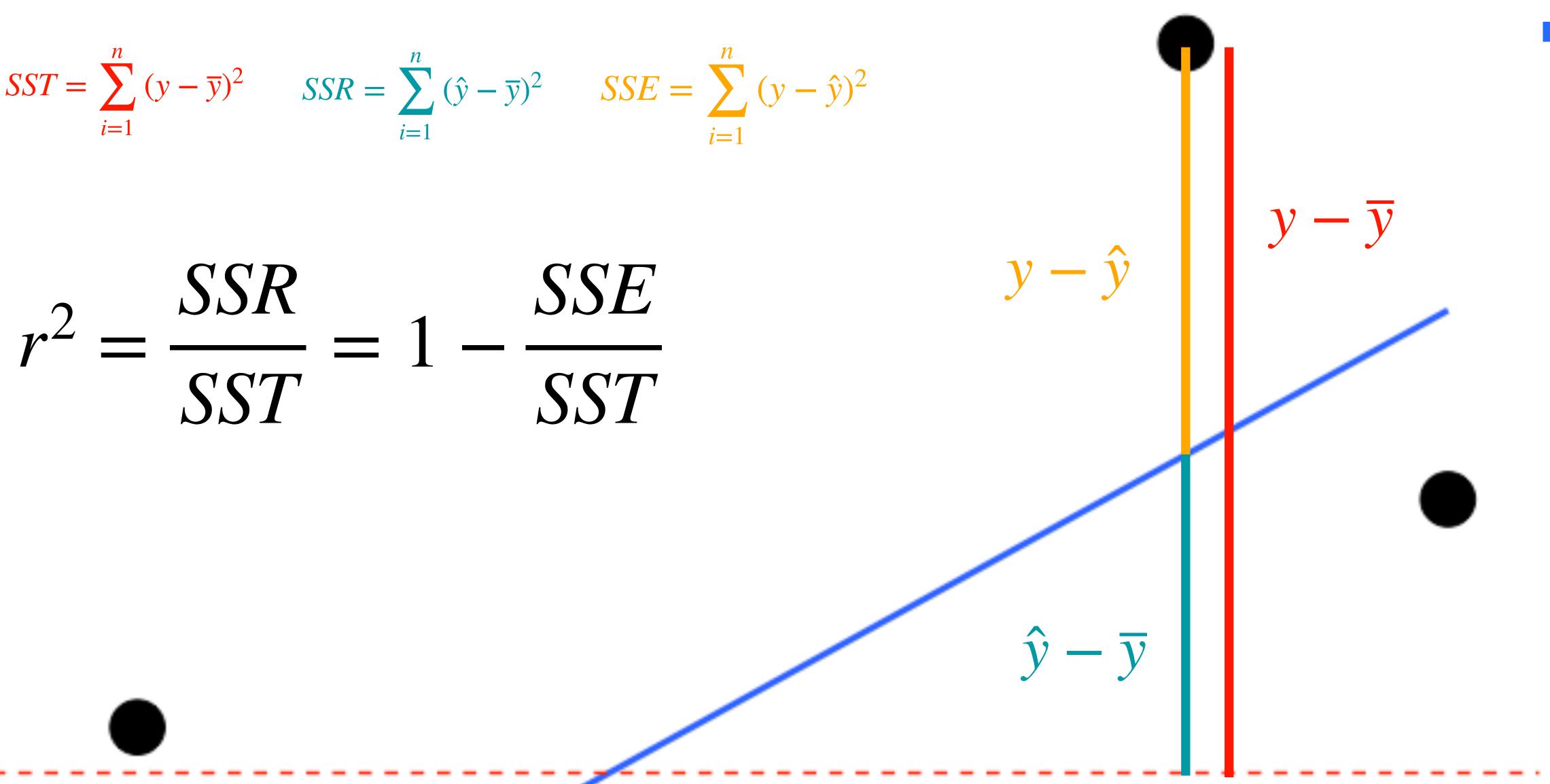


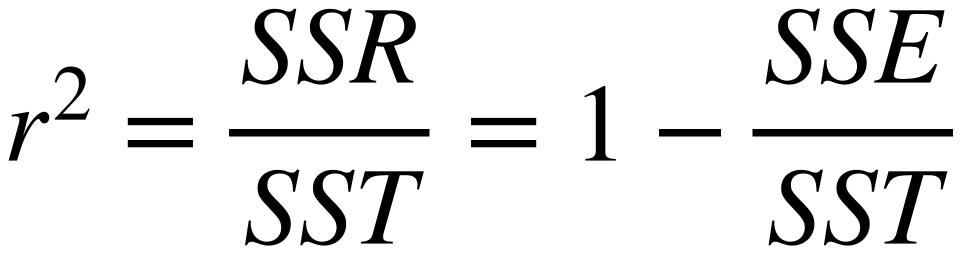


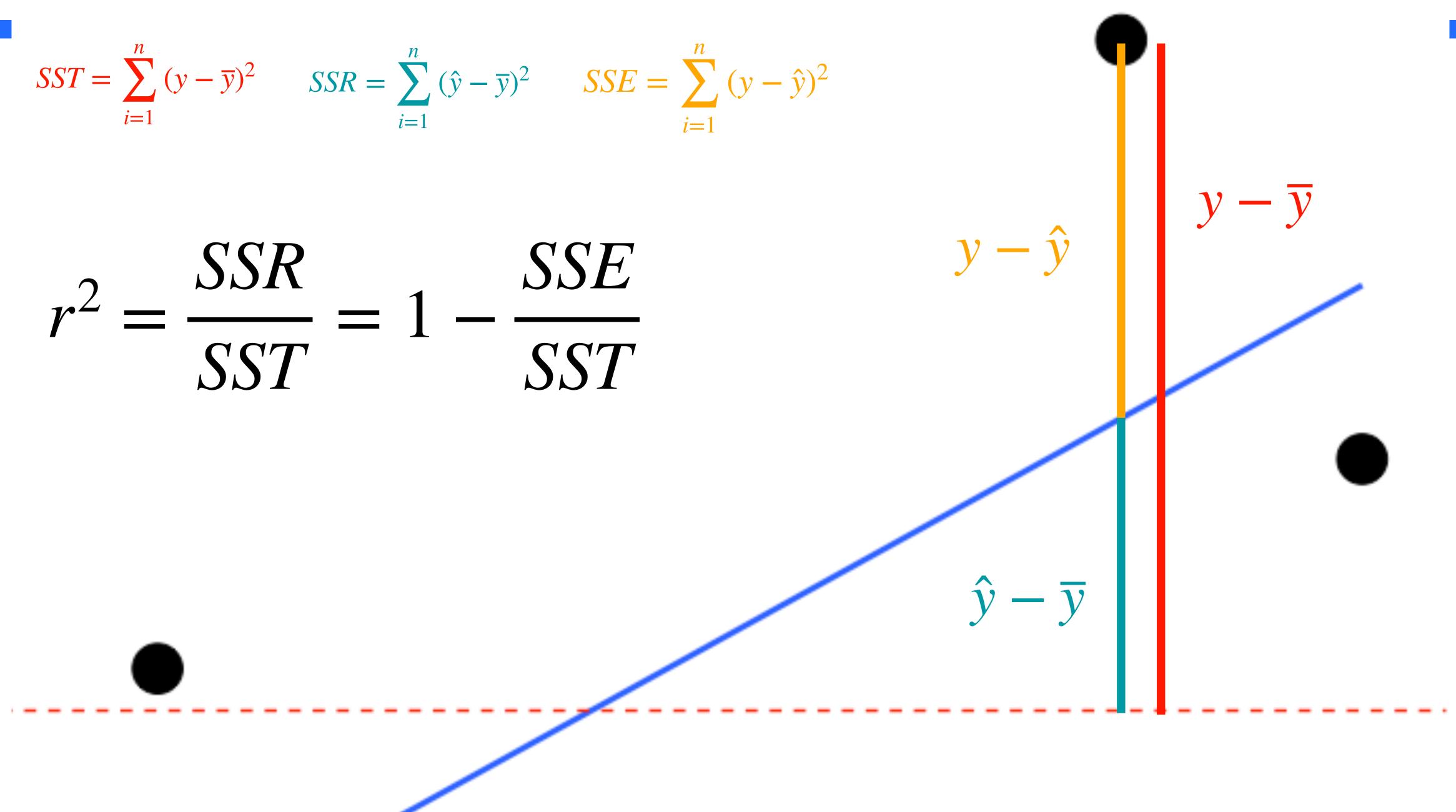










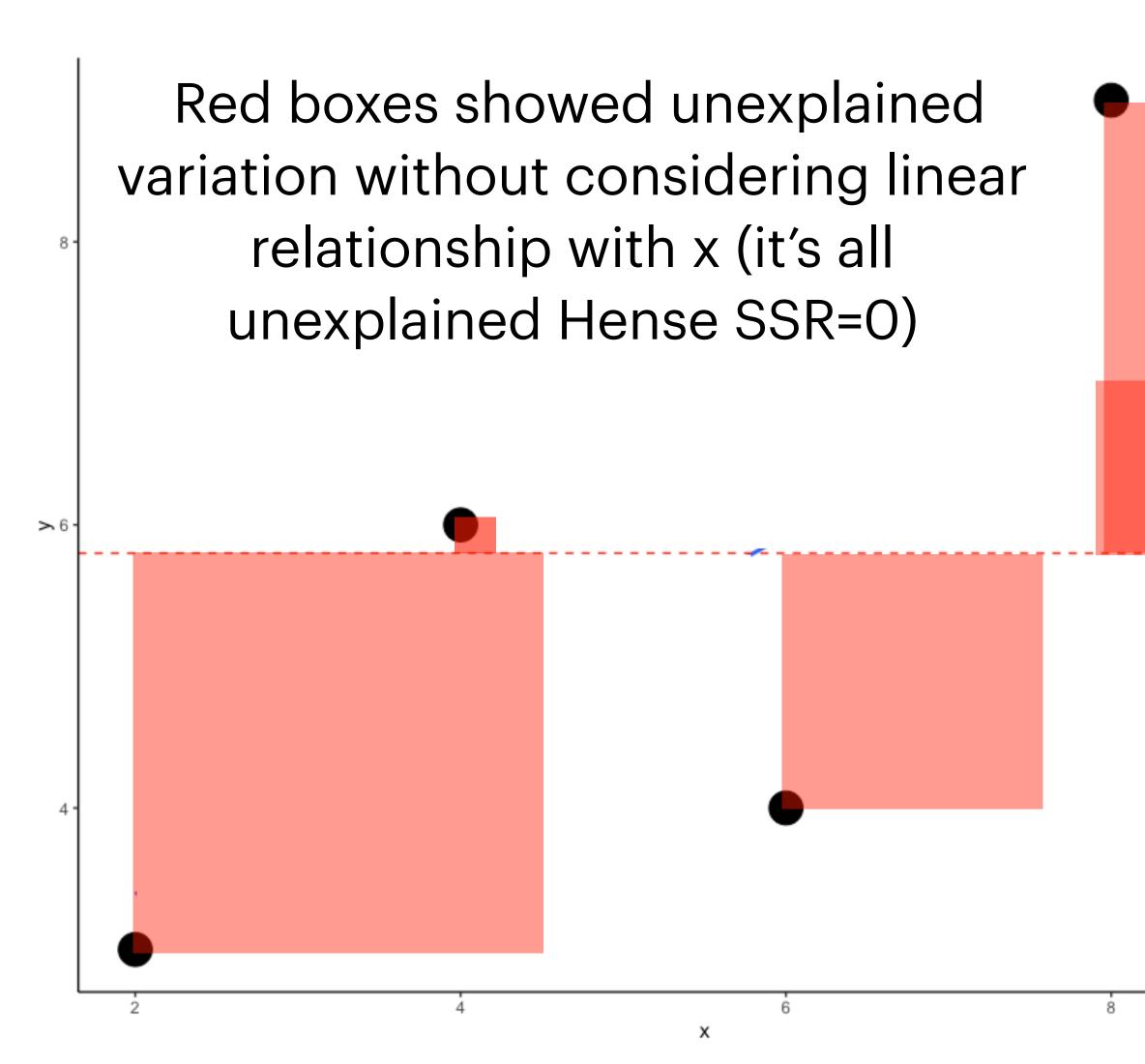


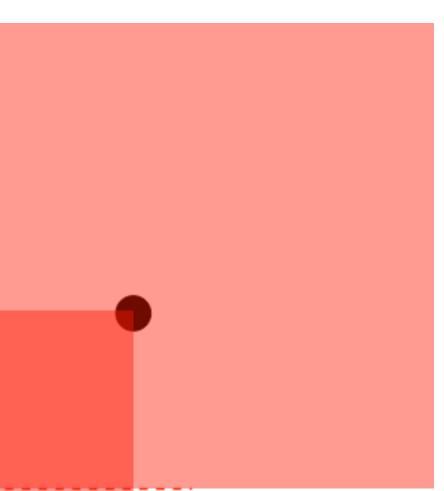
$$SST = \sum_{i=1}^{n} (y - \overline{y})^2 \quad SSR = \sum_{i=1}^{n} (\hat{y} - \overline{y})^2 \quad SSE = \sum_{i=1}^{n} (y - \hat{y})^2$$
$$r^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

$$ST = \sum_{i=1}^{n} (y - \overline{y})^2 \quad SSR = \sum_{i=1}^{n} (\hat{y} - \overline{y})^2 \quad SSE = \sum_{i=1}^{n} (y - \hat{y})^2$$
$$r^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

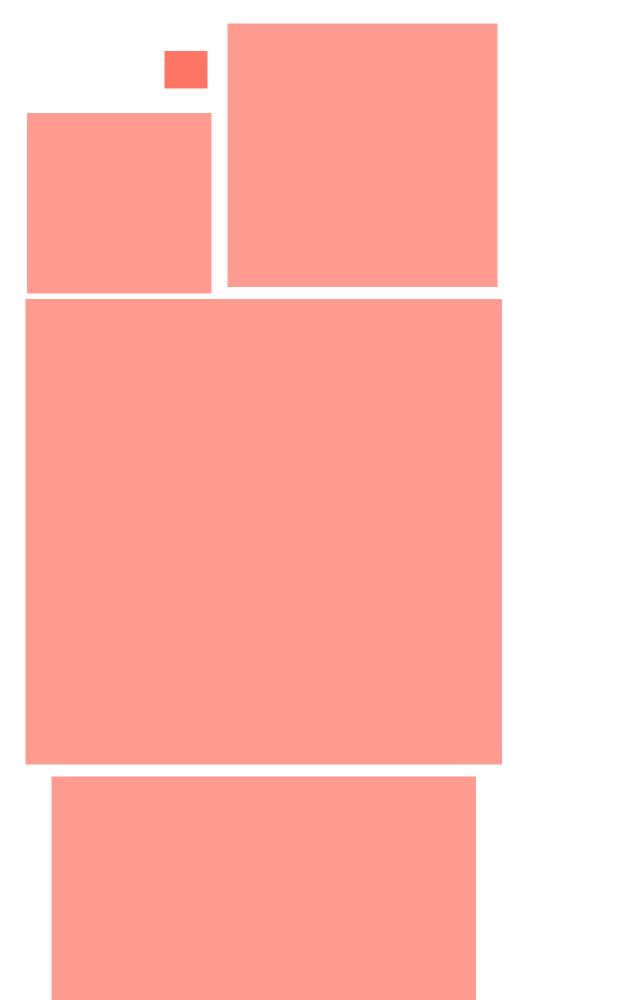
 $r^2$  describes the percentage of variation in "y" that can be explained by "y's" linear relationship with "x"



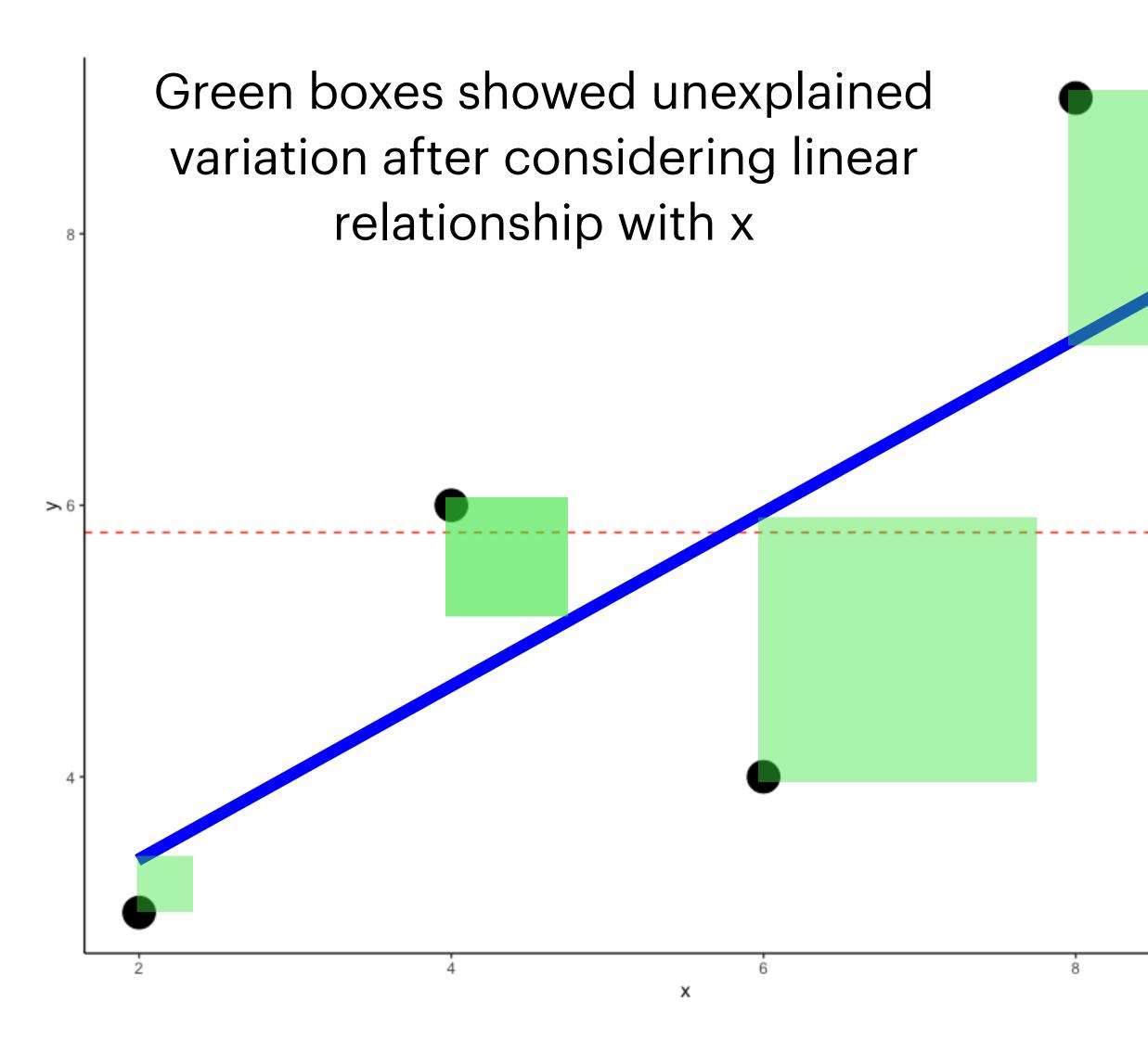


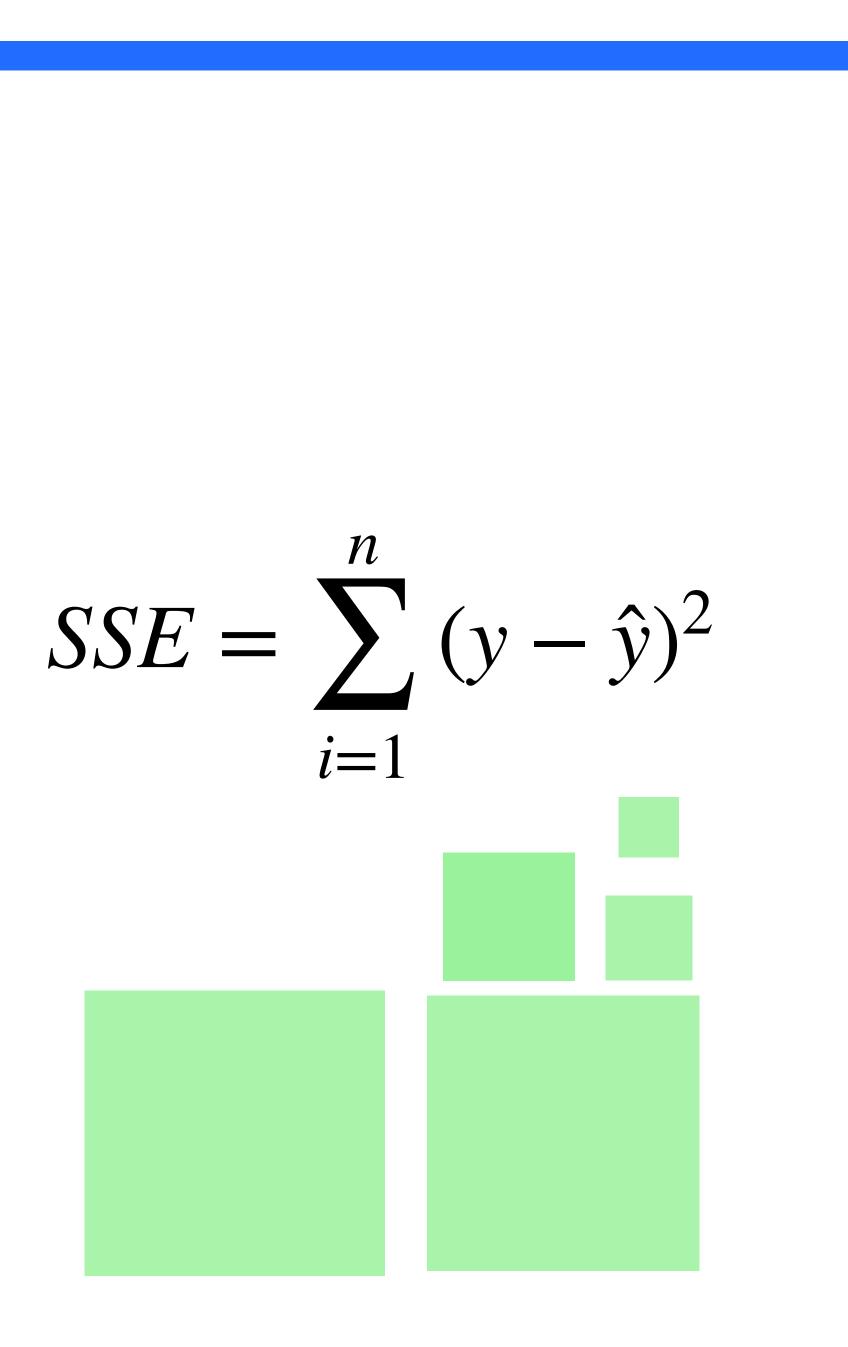


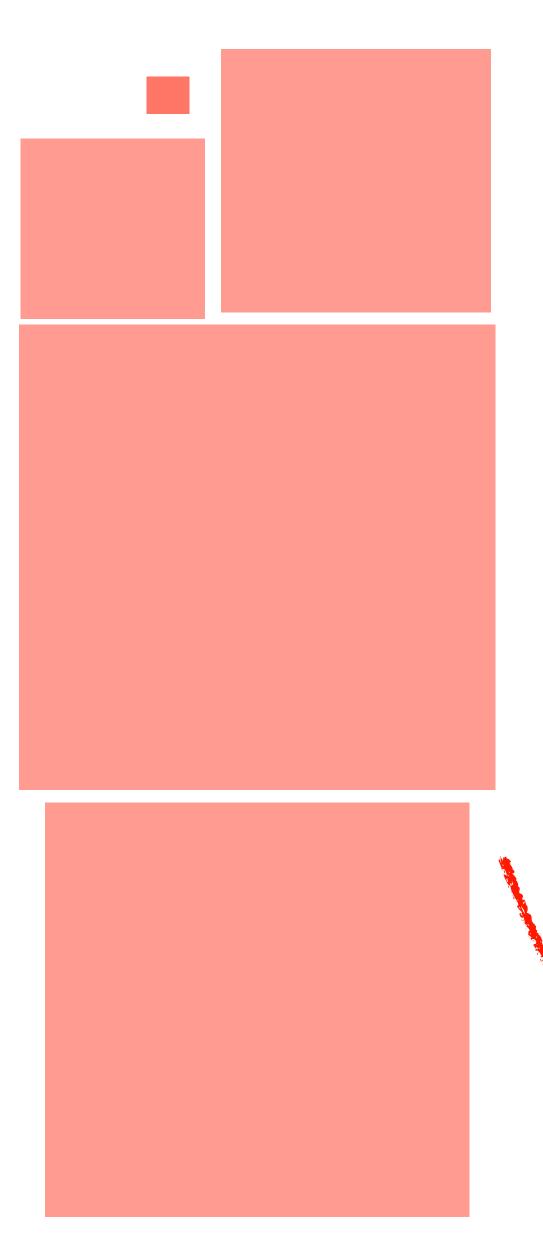
 $SSE = \sum_{i=1}^{n} (y - \hat{y})^2$ i=1









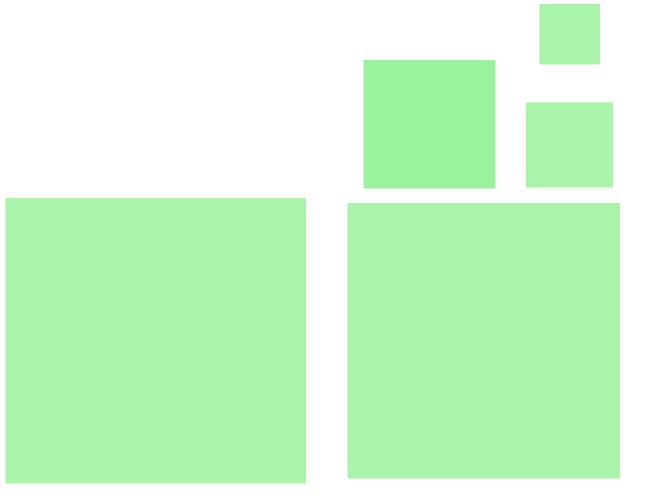


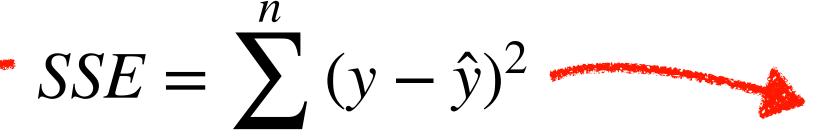
#### SSE SSR SST SST

N

i=1

When we consider the linear relationship the unexplained variance is reduced by  $\frac{SSE}{SST}$  percent. The percentage "explained" by the model is SSR SST







**Standard Error** of the regression Line tells us the average residual length, in other words the average amount our model over/under predicts.

 $s = \sqrt{\frac{SSE}{n-2}}$ 

Not expected to calculate by hand

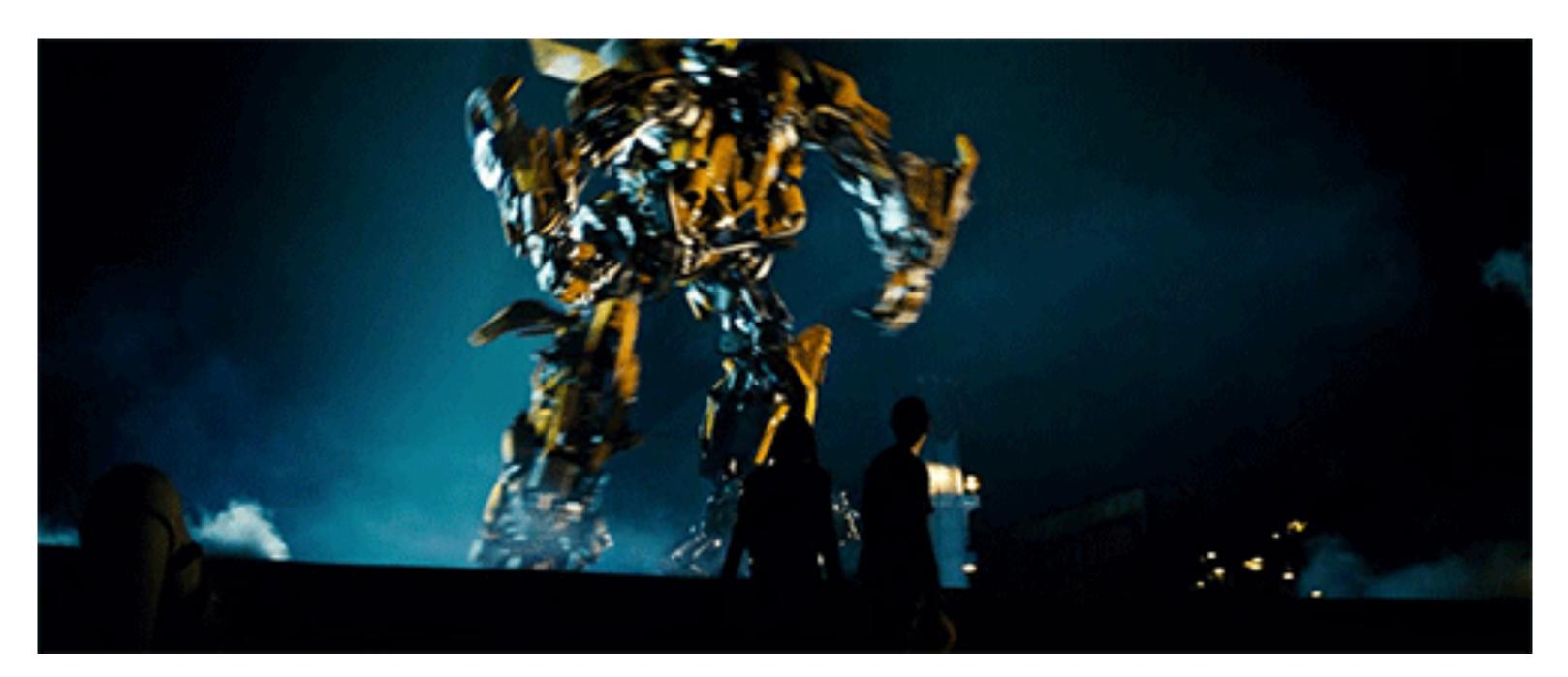
#### **BIVARIATE CATEGORICAL DATA**

# Examples: Deep Thoughts Unit 2 Q1-Q4 Question 1 Page 143

**Homework:** Read Pa Quiz 8, Quiz 9

# Homework: Read Pages 113-130 Barron's,

## **Transformations** Scatter Plot is Non-Linear



#### Linear Model Appropriate

#### There are many different transformations we might use

| Method                     | Transform                  |  |
|----------------------------|----------------------------|--|
| Standard linear regression | None                       |  |
| Exponential model          | DV = log(y)                |  |
| Quadratic<br>model         | DV = sqrt(y)               |  |
| Reciprocal<br>model        | DV = 1/y                   |  |
| Logarithmic<br>model       | IV = log(x)                |  |
| Power model                | DV = log(y)<br>IV = log(x) |  |

| <b>Regression equation</b>                        | Predicted value (ŷ)                |
|---------------------------------------------------|------------------------------------|
| $y = b_0 + b_1 x$                                 | $\hat{y} = b_0 + b_1 x$            |
| $\log(y) = b_0 + b_1 x$                           | $\hat{y} = 10^{b_0 + b_1 x}$       |
| sqrt(y) = b <sub>0</sub> + b <sub>1</sub> x       | $\hat{y} = (b_0 + b_1 x)^2$        |
| $1/y = b_0 + b_1 x$                               | $\hat{y} = 1 / (b_0 + b_1 x)$      |
| $y = b_0 + b_1 log(x)$                            | $\hat{y} = b_0 + b_1 \log(x)$      |
| log(y)=<br>b <sub>0</sub> + b <sub>1</sub> log(x) | $\hat{y} = 10^{b_0 + b_1 \log(x)}$ |

# Example: the length of a year for a sun. Here are the data:

| Distance (millions of miles) | Year (# of Earth-years) |
|------------------------------|-------------------------|
| 36                           | 0.24                    |
| 67                           | 0.61                    |
| 93                           | 1                       |
| 142                          | 1.88                    |
| 484                          | 11.86                   |
| 887                          | 29.46                   |
| 1784                         | 84.07                   |
| 2796                         | 164.82                  |
| 3666                         | 247.68                  |

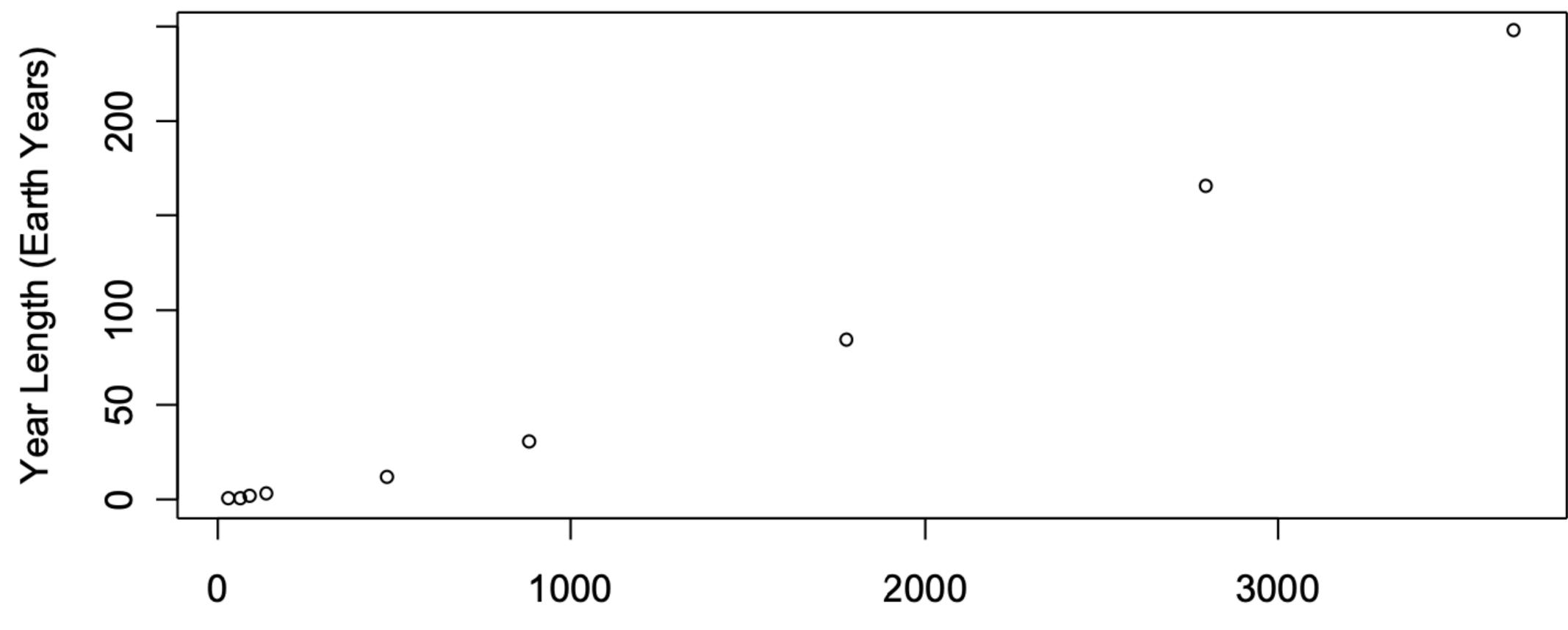
Example: the length of a year for a planet, based on its distance from the

#### 1. Let's run a simple linear regression.

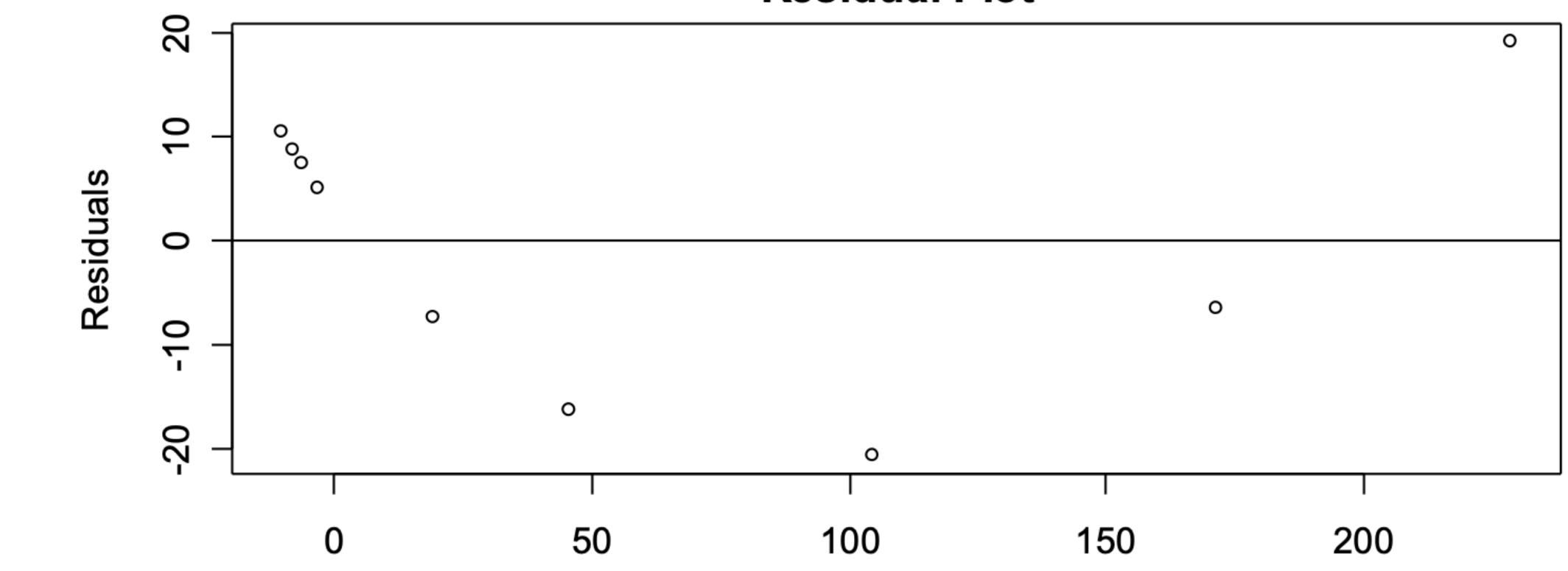
# What is $r^2$ ? Is the Model Appropriate?

#### Scatter Plot Looks non-linear

#### **Solar System Year Lengths**

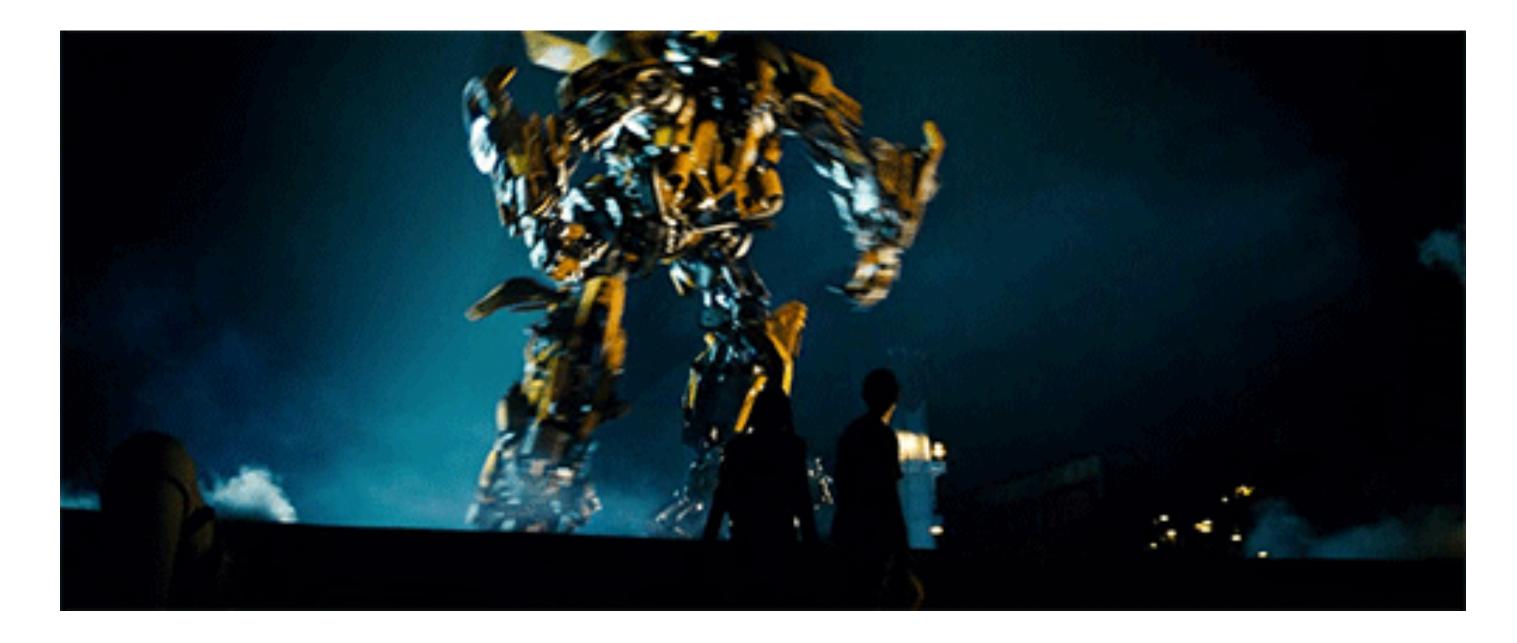


#### Residual plot makes non-linear pattern even more clear

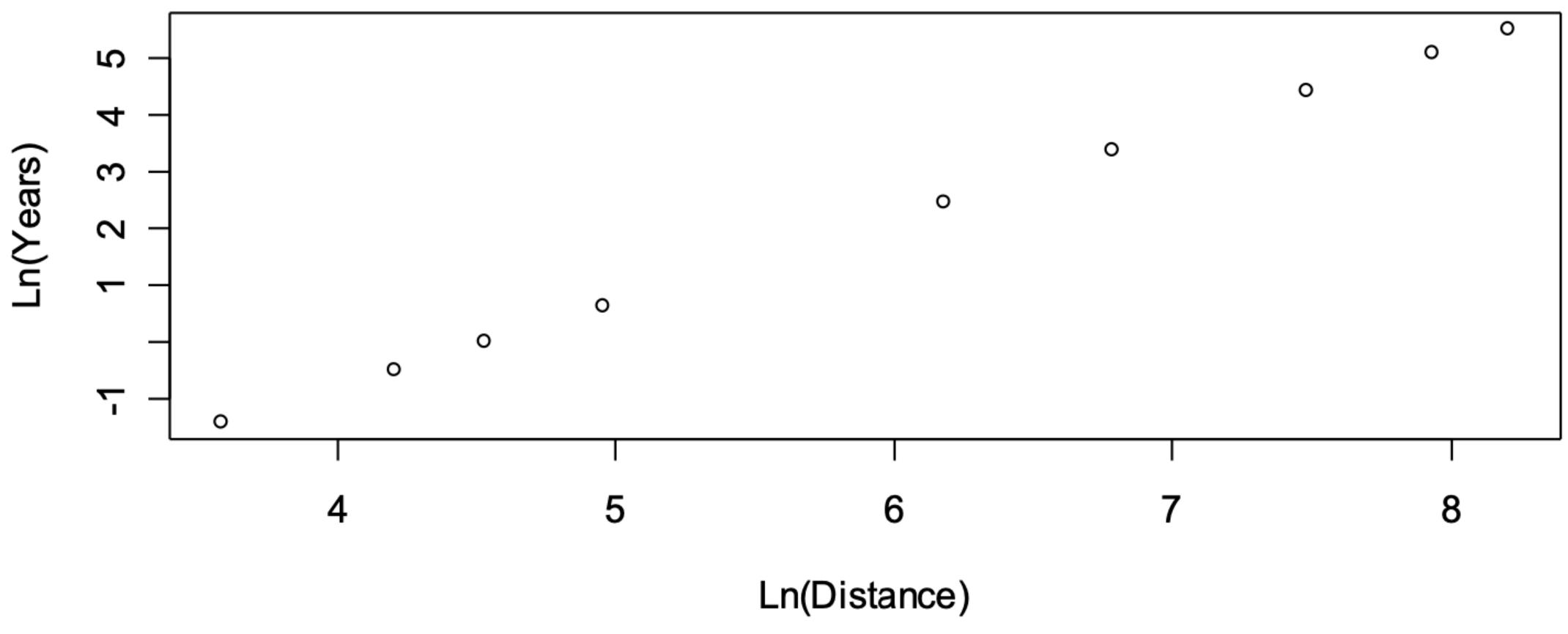


#### **Residual Plot**

# Let's run a simple linear regression. Problem: EW, that's not linear. Lets apply a power transformation



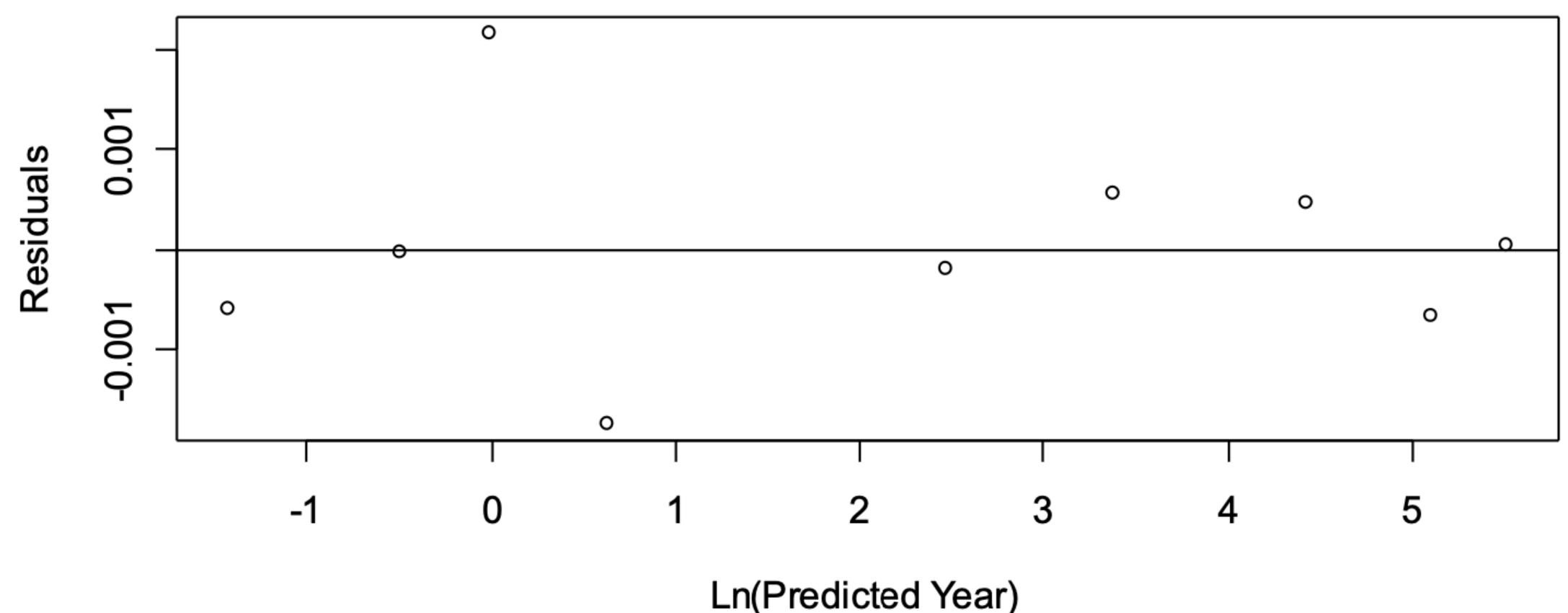
#### **New Scatter Plot Looks much more linear**



#### **Power Transformation**

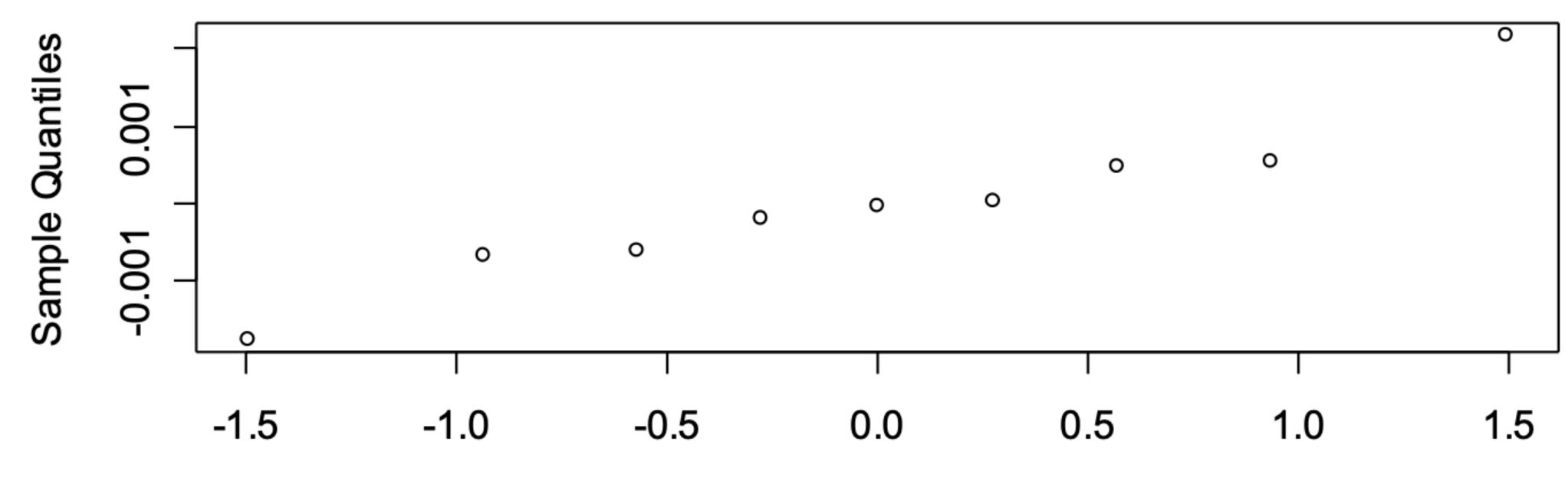
## **Residual plot improves significantly**

#### **Residual Plot - Power Transformation**



### Normality in residuals isn't bad either!

#### **Normal Probability Plot**



**Theoretical Quantiles** 

#### 1. Lets run a simple linear regression.

## 2. Problem: EW, that's not linear. Lets apply a power transformation

- data.
- **4. Model:**  $ln(\hat{y}) = -6.8046 + 1.5008 \cdot ln(x)$

#### **3. Run simple linear regression with transformed**

# Model: $ln(\hat{y}) = -6.8046 + 1.5008 \cdot ln(x)$

planet that doesn't exist. The halfway point between Mars and Jupiter is around 313 million miles from Sol. What will this model predict for a year length if a planet occupied this position?

- Let's use this model to predict the year length of a

# **Model:** $ln(\hat{y}) = -6.8046 + 1.5008 \cdot ln(x)$

# $ln(\hat{y}) = -6.8046 + 1.5008 \cdot ln(313)$ $ln(\hat{y}) = 1.8192$ $\hat{y} = e^{1.8192} = 6.167$

#### What you need to know

- Recognize the need for a transformation
- Justify a transformations appropriateness
- **Examples:**
- Barron's pg. 130 Example 2.26
- Deep Thoughts Q5-Q6