
# UNIT 2: EXTRA PRACTICE

Mr. Merrick · October 21, 2025

#### Problem 1. Describing a relationship

A study recorded the price (in dollars) and expert quality rating (0–100) for n=16 Bluetooth speakers. A scatterplot (below) shows the data.



(a) Describe the direction, form, and strength of the association, and identify any notable features.

(b) Based solely on the scatter plot, would a least-squares regression of rating on price be reasonable? Justify using the graph.

(c) In context, explain what a point near (\$90, 50) suggests to a shopper.

### Problem 2. Interpreting slope and intercept

The least-squares line for predicting rating y from price x (in dollars) for a different set of speakers is

$$\hat{y} = 41.3 + 0.21x, \qquad s = 5.6, \quad r^2 = 68\%.$$

These data came from speakers priced between about \$30 and \$250.

(a) Interpret the slope and the intercept in context.

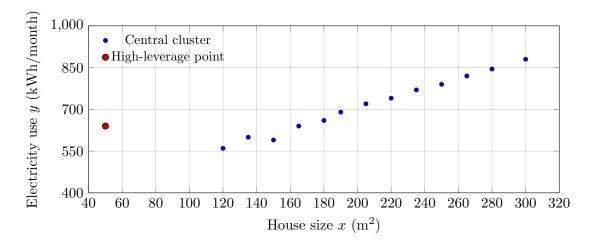
(b) Estimate the rating for a \$150 speaker and interpret s = 5.6.

(c) Is a \$500 prediction advisable? Explain.

# Problem 3. From output to equation

A computer regresses weekly study hours y on weekly work hours x for n = 12 students (working between 5 and 25 hours per week) and reports:

| Predictor        | Coef            | SE Coef            | t                      | p                  |
|------------------|-----------------|--------------------|------------------------|--------------------|
| Constant<br>Work | $18.2 \\ -0.41$ | $\frac{2.9}{0.15}$ | 6.28 -2.73             | $< 0.001 \\ 0.021$ |
| S = 3.7          | $R^2 = 42\%$    |                    | $R_{\rm adj}^2 = 36\%$ |                    |


(a) Write the least-squares equation and interpret the slope.

(b) If a student works 20 hours, what is the predicted study time? Comment on practical reasonableness.

(c) Compute and interpret the residual for a student who worked x=10 hours and studied y=12 hours. Then sketch or describe the residual plot pattern you would expect.

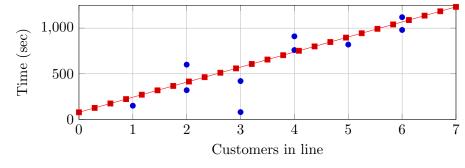
#### Problem 4. Influential point vs. outlier

The scatterplot shows monthly electricity use (y, in kWh) versus house size  $(x, \text{ in m}^2)$ . Most houses fall between 100–300 m<sup>2</sup>.



(a) Explain why the leftmost point is likely influential for the regression line.

(b) If that point were removed, what would you expect to happen to the slope and to  $\mathbb{R}^2$ ? Explain your reasoning using the figure.


# Problem 5. AP-style free response

A manager samples n = 10 checkout lines. Let x be the number of customers ahead of a shopper and y the total checkout time (sec). The regression output is:

| Predictor                     | Coef         | SE Coef | t                      | p            |
|-------------------------------|--------------|---------|------------------------|--------------|
| Constant<br>Customers in line | 78<br>165    | 0.0     | 0.81<br>5.89           | 0.44 < 0.001 |
| S = 190                       | $R^2 = 78\%$ |         | $R_{\rm adj}^2 = 75\%$ |              |

(a) Write the least-squares equation. Interpret the slope in context.

(b) Circle on the sketch the most likely outlier and explain why:



(c) Interpret  $R^2 = 78\%$ .

### Problem 6. Using residual to recover an observed value

For wolves, the fitted line for weight (kg) on length (m) is  $\hat{y} = -16.46 + 35.02x$ . A wolf of length  $1.40 \,\mathrm{m}$  has residual  $-9.67 \,\mathrm{kg}$ .

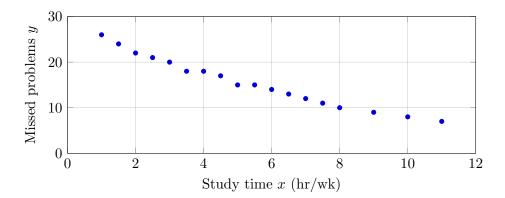
(a) What is this wolf's actual weight?

(b) Interpret the residual.

#### Problem 7. Multiple parts, mixed skills

Biologists measured mass y (g) and length x (mm) for 11 frogs and obtained the regression line

$$\hat{y} = -546 + 6.086x, \qquad r^2 \approx 0.819.$$


(a) Interpret the slope in context.

(b) Interpret  $r^2$  in context.

(c) On a residual plot, which frog would have the larger magnitude residual: one with (x = 130, y = 220) or one with (x = 170, y = 530)? Show work.

#### Problem 8. Correlation: sign, magnitude, and meaning

The plot shows a relationship between study time (x, hours/week) and number of missed homework problems (y) for n = 18 students.



(a) Based on the plot, state the *direction*, form, and strength of the association and give a rough estimate of the sign of r.

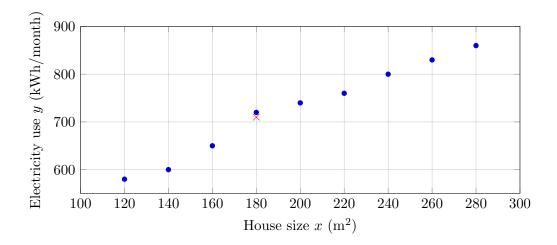
(b) A computer output (not shown) reports  $\mathbb{R}^2=0.92$  and a negative slope. Compute r and interpret  $\mathbb{R}^2$  in context.

### Problem 9. Changing units: what changes, what doesn't

For n=25 headphones, the least-squares line for predicting quality rating y (0–100 points) from price x (US dollars) is

$$\hat{y} = 12.0 + 0.45x, \qquad R^2 = 64\%.$$

Answer the following about unit changes.

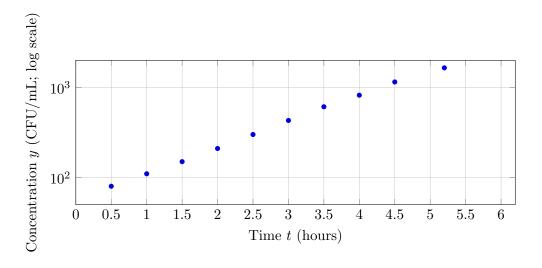

(a) If price is recorded in cents  $(x_c = 100x)$ , write the new regression equation  $\hat{y}$  in terms of  $x_c$ . What happens to r and  $R^2$ ?

(b) Suppose ratings are converted to a 5-star scale with  $y_{\star} = y/20$ . Write the regression of  $y_{\star}$  on dollars x. What happens to r and  $R^2$ ?

(c) Briefly explain why r and  $R^2$  are invariant to these linear unit changes.

### Problem 10. "Line through the means" & residual properties

For the homes below (electricity vs. size), the sample means are  $\bar{x} = 180 \text{ m}^2$  and  $\bar{y} = 710 \text{ kWh}$ . The point  $(\bar{x}, \bar{y})$  is marked with a red cross.




(a) Must the least-squares regression line pass through the cross at  $(\bar{x}, \bar{y})$ ? Explain.

(b) For any fitted least-squares line on this dataset, what is the sum and the mean of the residuals? Briefly justify.

### Problem 11. Log re-expression and multiplicative interpretation

The plot shows bacterial concentration y (CFU/mL) versus incubation time t (hours) for n=10 trials.



A linear model was fit to  $\log_{10} y$  versus t, giving

$$\log_{10} \hat{y} = 2.10 + 0.18 t, \qquad R^2 = 94\%.$$

(a) Interpret the slope 0.18 in multiplicative terms for y.

(b) Predict the concentration at t = 3 hours on the original scale and comment on model fit using  $\mathbb{R}^2$ .

(c) Briefly explain why the log transformation was appropriate based on the plot.