Least Squares Regression and R^2

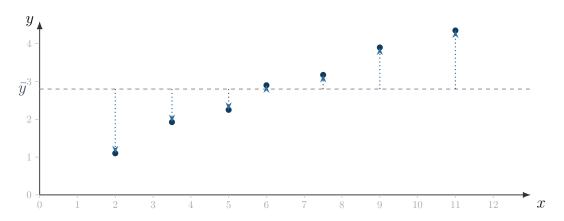
Mr. Merrick · September 27, 2025

1) Total Variance in y: squares to the mean (the "null model")

Point	A	В	С	D	E	F	G
\overline{x}	2.0	3.5	5.0	6.0	7.5	9.0	11.0
y	1.10	1.925	2.25	2.90	3.175	3.90	4.35

The dashed horizontal line marks $\bar{y} = 2.800$. Each dotted arrow is a vertical deviation $(y_i - \bar{y})$. For every point, draw a **square** using that arrow as a side. The total area of all squares is

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 \quad \text{(total variation in } y\text{)}.$$



Record your total: $SST = \sum (y_i - \bar{y})^2 =$

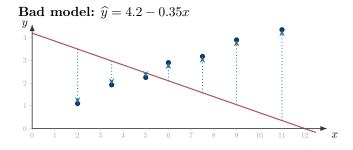
Quick questions

- 1. The *null model* predicts every value of y with \overline{y} . Does it take x into consideration, or use x to explain variation?
- 2. If we changed the units of y (e.g. cm \rightarrow m), how would the area of each square change?
- 3. For this dataset, does it look like there is a relationship between y and x?

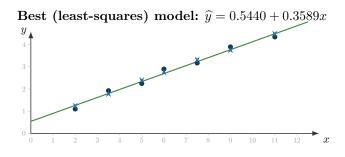
2) Least Squares: choose a model to minimize squared residuals

A linear model predicts $\hat{y} = a + bx$. Each residual is $e_i = y_i - \hat{y}_i$ (Actual – Predicted — remember AP). We choose (\hat{a}, \hat{b}) that minimizes the total sum of squared errors. Draw squares for each model's residuals.

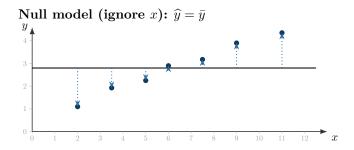
$$SSE(a,b) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (a + bx_i))^2.$$



	x_i	y_i	\widehat{y}_i	$e_i = y_i - \hat{y}_i$	$\hat{y_i}$ e_i^2
A	2.0	1.10			
В	3.5	1.925			
\mathbf{C}	5.0	2.25			
D	6.0	2.90			
\mathbf{E}	7.5	3.175			
F	9.0	3.90			
G	11.0	4.35			
		SSE_b	ad =	$\sum e_i^2 =$	



	x_i	y_i	\widehat{y}_i	$e_i = y_i$	$-\widehat{y}_i$	e_i^2
A	2.0	1.10				
В	3.5	1.925				
$^{\rm C}$	5.0	2.25				
D	6.0	2.90				
E	7.5	3.175				
F	9.0	3.90				
G	11.0	4.35				



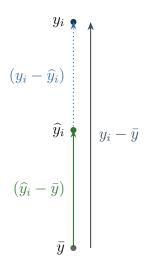
	x_i	y_i	\widehat{y}_i	$e_i = y_i - \widehat{y}_i$	e_i^2
A	2.0	1.10			
В	3.5	1.925			
\mathbf{C}	5.0	2.25			
D	6.0	2.90			
Ε	7.5	3.175			
F	9.0	3.90			
G	11.0	4.35			
		SSEn	ull =	$\sum e_i^2 =$	

Quick questions

- 1. Which model has the *smallest* total square area?
- 2. The bottom row ("ignore x") gives a baseline amount of square area. How can we tell if another model is an *improvement* compared to this baseline?
- 3. If a model's square area is only a little smaller than the baseline, what does that suggest about x? What if the model's square area is much smaller?

Any response y_i can be decomposed into

$$y_i - \bar{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \bar{y}).$$



Squaring and summing over points leads to the sum-of-squares identity

$$\underbrace{\text{SST}}_{\sum (y_i - \bar{y})^2} = \underbrace{\text{SSR}}_{\sum (\widehat{y}_i - \bar{y})^2} + \underbrace{\text{SSE}}_{\sum (y_i - \widehat{y}_i)^2}.$$

The coefficient of determination is

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}},$$

the proportion of total square area explained by using x.

Shade/identify the squares:

- On the *null model* panel, your squares show SST.
- On the best model panel, your squares show SSE.
- The explained squares correspond to SSR = SST SSE.

	SST	SSE (best)	SSR = SST - SSE	$R^2 = \frac{\text{SSR}}{\text{SST}}$
Values				

Practice

- 1. Explain why the explained squares (SSR) must be nonnegative.
- 2. If a different line (not least squares) is used, which quantity necessarily increases, SSE or SST? Why?
- 3. In this dataset, \mathbb{R}^2 is very close to 1. What does that tell you about the usefulness of x for predicting y?

4. What is the lowest possible value of \mathbb{R}^2 and what does it mean in context? What is the largest value of \mathbb{R}^2 and what does it mean in context?

5. \star Prove SST = SSR + SSE.