
Least Squares Regression and R2

Mr. Merrick · September 27, 2025

1) Total Variance in y: squares to the mean (the “null model”)

Point A B C D E F G

x 2.0 3.5 5.0 6.0 7.5 9.0 11.0
y 1.10 1.925 2.25 2.90 3.175 3.90 4.35

The dashed horizontal line marks ȳ = 2.800. Each dotted arrow is a vertical deviation (yi − ȳ). For every
point, draw a square using that arrow as a side. The total area of all squares is

SST =
n∑

i=1
(yi − ȳ)2 (total variation in y).
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Record your total: SST = ∑(yi − ȳ)2 =
Quick questions
1. The null model predicts every value of y with y. Does it take x into consideration, or use x to explain

variation?

2. If we changed the units of y (e.g. cm → m), how would the area of each square change?

3. For this dataset, does it look like there is a relationship between y and x?
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2) Least Squares: choose a model to minimize squared residuals

A linear model predicts ŷ = a + bx. Each residual is ei = yi − ŷi (Actual − Predicted — remember AP).
We choose (â, b̂) that minimizes the total sum of squared errors. Draw squares for each model’s residuals.

SSE(a, b) =
n∑

i=1

(
yi − ŷi

)2
=

n∑
i=1

(
yi − (a + bxi)

)2
.

Bad model: ŷ = 4.2 − 0.35x
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xi yi ŷi ei = yi − ŷi e2
i

A 2.0 1.10
B 3.5 1.925
C 5.0 2.25
D 6.0 2.90
E 7.5 3.175
F 9.0 3.90
G 11.0 4.35

SSEbad =
∑

e2
i =

Best (least-squares) model: ŷ = 0.5440 + 0.3589x
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SSEbest =
∑

e2
i =

Null model (ignore x): ŷ = ȳ
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SSEnull =
∑

e2
i =

Quick questions

1. Which model has the smallest total square area?

2. The bottom row (“ignore x”) gives a baseline amount of square area. How can we tell if another
model is an improvement compared to this baseline?

3. If a model’s square area is only a little smaller than the baseline, what does that suggest about x?
What if the model’s square area is much smaller?
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3) Decomposing squares and R2

Any response yi can be decomposed into

yi − ȳ = (yi − ŷi) + (ŷi − ȳ).

ȳ

ŷi

yi

yi − ȳ

(ŷi − ȳ)

(yi − ŷi)

Squaring and summing over points leads to the sum-of-squares identity

SST︸ ︷︷ ︸∑
(yi−ȳ)2

= SSR︸ ︷︷ ︸∑
(ŷi−ȳ)2

+ SSE︸ ︷︷ ︸∑
(yi−ŷi)2

.

The coefficient of determination is

R2 = SSR
SST = 1 − SSE

SST ,

the proportion of total square area explained by using x.
Shade/identify the squares:
• On the null model panel, your squares show SST.

• On the best model panel, your squares show SSE.

• The explained squares correspond to SSR = SST − SSE.

SST SSE (best) SSR = SST − SSE R2 = SSR
SST

Values

Practice
1. Explain why the explained squares (SSR) must be nonnegative.

2. If a different line (not least squares) is used, which quantity necessarily increases, SSE or SST? Why?

3. In this dataset, R2 is very close to 1. What does that tell you about the usefulness of x for predicting
y?
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4. What is the lowest possible value of R2 and what does it mean in context? What is the largest value
of R2 and what does it mean in context?

5. ⋆ Prove SST = SSR + SSE.
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