
Least Squares Regression and R2

Mr. Merrick · September 26, 2025

1) Total Variance in y: squares to the mean (the “null model”)

Point A B C D E F G

x 2.0 3.5 5.0 6.0 7.5 9.0 11.0
y 1.10 1.925 2.25 2.90 3.175 3.90 4.35

The dashed horizontal line marks ȳ = 2.800. Each dotted arrow is a vertical deviation (yi − ȳ). For every
point, draw a square using that arrow as a side. The total area of all squares is

SST =
n∑

i=1
(yi − ȳ)2 (total variation in y).
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Record your total: SST = ∑(yi − ȳ)2 = 7.7213
Quick questions
1. The null model predicts every value of y with y. Does it take x into consideration, or use x to explain

variation?

It ignores x entirely and predicts the same value ȳ for every point (no relationship).

2. If we changed the units of y (e.g. cm → m), how would the area of each square change?

Areas scale by the square of the unit change since each side length (a deviation from ȳ) rescales.

3. For this dataset, does it look like there is a relationship between y and x?

Yes. The points rise with x in an almost straight line—strong positive linear association.
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2) Least Squares: choose a model to minimize squared residuals

A linear model predicts ŷ = a + bx. Each residual is ei = yi − ŷi (Actual − Predicted — remember AP).
We choose (â, b̂) that minimizes the total sum of squared errors. Draw squares for each model’s residuals.

SSE(a, b) =
n∑

i=1

(
yi − ŷi

)2
=

n∑
i=1

(
yi − (a + bxi)

)2
.

Bad model: ŷ = 4.2 − 0.35x
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xi yi ŷi ei = yi − ŷi e2
i

A 2.0 1.10 3.500 -2.400 5.760
B 3.5 1.925 2.975 -1.050 1.103
C 5.0 2.25 2.450 -0.200 0.040
D 6.0 2.90 2.100 0.800 0.640
E 7.5 3.175 1.575 1.600 2.560
F 9.0 3.90 1.050 2.850 8.123
G 11.0 4.35 0.350 4.000 16.000

SSEbad =
∑

e2
i = 34.225

Best (least-squares) model: ŷ = 0.5440 + 0.3589x

x

y

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

xi yi ŷi ei = yi − ŷi e2
i

A 2.0 1.10 1.2618 -0.1618 0.026179
B 3.5 1.925 1.8001 0.12485 0.015588
C 5.0 2.25 2.3385 -0.0885 0.007832
D 6.0 2.90 2.6974 0.2026 0.041047
E 7.5 3.175 3.2357 -0.06075 0.003691
F 9.0 3.90 3.7741 0.1259 0.015851
G 11.0 4.35 4.4919 -0.1419 0.020136

SSEbest =
∑

e2
i = 0.1303

Null model (ignore x): ŷ = ȳ
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xi yi ŷi ei = yi − ŷi e2
i

A 2.0 1.10 2.800 -1.700 2.890
B 3.5 1.925 2.800 -0.875 0.766
C 5.0 2.25 2.800 -0.550 0.303
D 6.0 2.90 2.800 0.100 0.010
E 7.5 3.175 2.800 0.375 0.141
F 9.0 3.90 2.800 1.100 1.210
G 11.0 4.35 2.800 1.550 2.403

SSEnull =
∑

e2
i = 7.7213

Quick questions
1. Which model has the smallest total square area?

The least-squares model (middle row).
2. The bottom row (“ignore x”) gives a baseline amount of square area. How can we tell if another

model is an improvement compared to this baseline?
Compare its total residual square area to the baseline’s; smaller than baseline means improvement,
larger means worse.

3. If a model’s square area is only a little smaller than the baseline, what does that suggest about x?
What if the model’s square area is much smaller?
Only a little smaller ⇒ x explains little of the variation in y. Much smaller ⇒ x explains a large
share of the variation.
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3) Decomposing squares and R2

Any response yi can be decomposed into

yi − ȳ = (yi − ŷi) + (ŷi − ȳ).

ȳ

ŷi

yi

yi − ȳ

(ŷi − ȳ)

(yi − ŷi)

Squaring and summing over points leads to the sum-of-squares identity

SST︸ ︷︷ ︸∑
(yi−ȳ)2

= SSR︸ ︷︷ ︸∑
(ŷi−ȳ)2

+ SSE︸ ︷︷ ︸∑
(yi−ŷi)2

.

The coefficient of determination is

R2 = SSR
SST = 1 − SSE

SST ,

the proportion of total square area explained by using x.
Shade/identify the squares:
• On the null model panel, your squares show SST.

• On the best model panel, your squares show SSE.

• The explained squares correspond to SSR = SST − SSE.

SST SSE (best) SSR = SST − SSE R2 = SSR
SST

Values 7.7213 0.1303 7.5909 0.9831

Practice
1. Explain why the explained squares (SSR) must be nonnegative.

They are sums of squares (ŷi − ȳ)2, and squares are never negative; geometrically, area cannot be
negative.

2. If a different line (not least squares) is used, which quantity necessarily increases, SSE or SST? Why?

SSE increases (or stays the same) because the least-squares line minimizes the sum of squared residuals.
SST depends only on y and ȳ and is unaffected by the choice of line.
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3. In this dataset, R2 is very close to 1. What does that tell you about the usefulness of x for predicting
y?

Nearly all of the total variation in y is explained by the linear relationship with x; x is highly predictive
here.

4. What is the lowest possible value of R2 and what does it mean in context? What is the largest value
of R2 and what does it mean in context?

R2
min = 0: using x gives no improvement over predicting everyone with ȳ (no explained variation).

R2
max = 1: a perfect linear fit—every residual is 0, so the model explains all the variation.

5. ⋆ Prove SST = SSR + SSE.

Goal. Show
∑

(yi − ȳ)2 =
∑

(ŷi − ȳ)2 +
∑

(yi − ŷi)2.
Step 1: Pointwise decomposition. For each i,

yi − ȳ = (yi − ŷi) + (ŷi − ȳ).

Squaring gives
(yi − ȳ)2 = (yi − ŷi)2 + (ŷi − ȳ)2 + 2(yi − ŷi)(ŷi − ȳ).

Summing over i, ∑
(yi − ȳ)2︸ ︷︷ ︸

SST

=
∑

(yi − ŷi)2︸ ︷︷ ︸
SSE

+
∑

(ŷi − ȳ)2︸ ︷︷ ︸
SSR

+2
∑

(yi − ŷi)(ŷi − ȳ).

Thus it suffices to show the cross term is 0.
Step 2: Normal equations ⇒ orthogonality. Write residuals ei = yi − ŷi. For least squares with
an intercept, the normal equations give

n∑
i=1

ei = 0 and
n∑

i=1
eixi = 0.

Because ŷi = â + b̂ xi, we have∑
ei ŷi = â

∑
ei + b̂

∑
eixi = 0 + 0 = 0.

Now expand the cross term: ∑
ei(ŷi − ȳ) =

∑
eiŷi︸ ︷︷ ︸

=0

−ȳ
∑

ei︸ ︷︷ ︸
=0

= 0.

Hence 2 ∑(yi − ŷi)(ŷi − ȳ) = 0.
Conclusion. The cross term vanishes, so

SST = SSR + SSE.

Geometric intuition (optional). Let y be the data vector, 1 the all-ones vector, and X = [1, x].
Then ŷ is the orthogonal projection of y onto the column space of X. Decompose around the mean:
y − ȳ 1 = (ŷ − ȳ 1) + (y − ŷ), where the two addends are orthogonal. By the Pythagorean theorem,

∥y − ȳ 1∥2 = ∥ŷ − ȳ 1∥2 + ∥y − ŷ∥2,

which is exactly SST = SSR + SSE. Note: The intercept is essential—without it, the identity holds
with ȳ replaced by 0 (about the origin).
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