Least Squares Regression and R^2

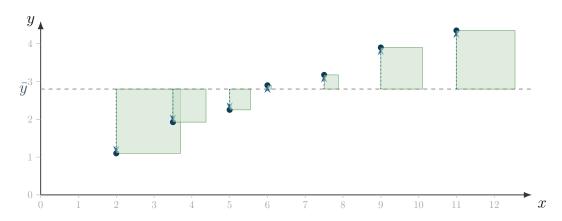
Mr. Merrick · September 26, 2025

1) Total Variance in y: squares to the mean (the "null model")

Point	A	В	С	D	Е	F	G
\overline{x}	2.0	3.5	5.0	6.0	7.5	9.0	11.0
y	1.10	1.925	2.25	2.90	3.175	3.90	4.35

The dashed horizontal line marks $\bar{y} = 2.800$. Each dotted arrow is a vertical deviation $(y_i - \bar{y})$. For every point, draw a **square** using that arrow as a side. The total area of all squares is

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 \quad \text{(total variation in } y\text{)}.$$



Record your total: SST = $\sum (y_i - \bar{y})^2 = 7.7213$

Quick questions

1. The *null model* predicts every value of y with \overline{y} . Does it take x into consideration, or use x to explain variation?

It ignores x entirely and predicts the same value \bar{y} for every point (no relationship).

2. If we changed the units of y (e.g. cm \rightarrow m), how would the area of each square change? Areas scale by the square of the unit change since each side length (a deviation from \bar{y}) rescales.

1

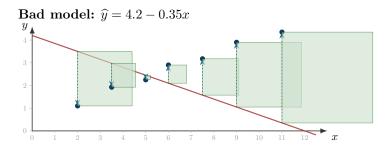
3. For this dataset, does it look like there is a relationship between y and x?

Yes. The points rise with x in an almost straight line—strong positive linear association.

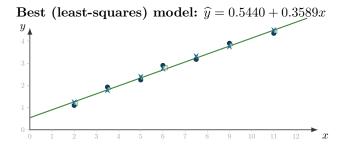
2) Least Squares: choose a model to minimize squared residuals

A linear model predicts $\hat{y} = a + bx$. Each residual is $e_i = y_i - \hat{y}_i$ (Actual – Predicted — remember AP). We choose (\hat{a}, \hat{b}) that minimizes the total sum of squared errors. Draw squares for each model's residuals.

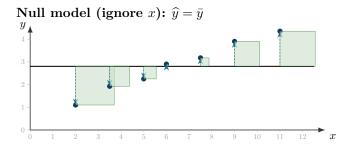
$$SSE(a,b) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (a + bx_i))^2.$$



	x_i	y_i	\widehat{y}_i	$e_i = y_i - \widehat{y}_i$	e_i^2
A	2.0	1.10	3.500	-2.400	5.760
В	3.5	1.925	2.975	-1.050	1.103
\mathbf{C}	5.0	2.25	2.450	-0.200	0.040
D	6.0	2.90	2.100	0.800	0.640
\mathbf{E}	7.5	3.175	1.575	1.600	2.560
F	9.0	3.90	1.050	2.850	8.123
G	11.0	4.35	0.350	4.000	16.000
$SSE_{bad} = \sum e_i^2 = 34.225$					



	x_i	y_i	\widehat{y}_i	$e_i = y_i - \widehat{y}_i$	e_i^2
A	2.0	1.10	1.2618	-0.1618	0.026179
В	3.5	1.925	1.8001	0.12485	0.015588
$^{\rm C}$	5.0	2.25	2.3385	-0.0885	0.007832
D	6.0	2.90	2.6974	0.2026	0.041047
\mathbf{E}	7.5	3.175	3.2357	-0.06075	0.003691
F	9.0	3.90	3.7741	0.1259	0.015851
\mathbf{G}	11.0	4.35	4.4919	-0.1419	0.020136
			SSE_{be}	$_{\rm st} = \sum e_i^2$	= 0.1303



	x_i	y_i	\widehat{y}_i	$e_i = y_i - \widehat{y}_i$	e_i^2		
A	2.0	1.10	2.800	-1.700	2.890		
В	3.5	1.925	2.800	-0.875	0.766		
$^{\rm C}$	5.0	2.25	2.800	-0.550	0.303		
D	6.0	2.90	2.800	0.100	0.010		
\mathbf{E}	7.5	3.175	2.800	0.375	0.141		
F	9.0	3.90	2.800	1.100	1.210		
G	11.0	4.35	2.800	1.550	2.403		
	$SSE_{null} = \sum e_i^2 = 7.7213$						

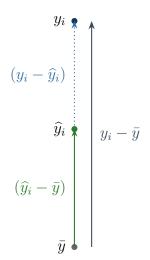
Quick questions

- 1. Which model has the *smallest* total square area?
 - The least-squares model (middle row).
- 2. The bottom row ("ignore x") gives a baseline amount of square area. How can we tell if another model is an improvement compared to this baseline?
 - Compare its total residual square area to the baseline's; smaller than baseline means improvement, larger means worse.
- 3. If a model's square area is only a little smaller than the baseline, what does that suggest about x? What if the model's square area is much smaller?

Only a little smaller $\Rightarrow x$ explains little of the variation in y. Much smaller $\Rightarrow x$ explains a large share of the variation.

Any response y_i can be decomposed into

$$y_i - \bar{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \bar{y}).$$



Squaring and summing over points leads to the sum-of-squares identity

$$\underbrace{\text{SST}}_{\sum (y_i - \bar{y})^2} = \underbrace{\text{SSR}}_{\sum (\hat{y}_i - \bar{y})^2} + \underbrace{\text{SSE}}_{\sum (y_i - \hat{y}_i)^2}.$$

The coefficient of determination is

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}},$$

the proportion of total square area explained by using x.

Shade/identify the squares:

- On the *null model* panel, your squares show SST.
- On the best model panel, your squares show SSE.
- The explained squares correspond to SSR = SST SSE.

	SST	SSE (best)	SSR = SST - SSE	$R^2 = \frac{\text{SSR}}{\text{SST}}$
Values	7.7213	0.1303	7.5909	0.9831

Practice

1. Explain why the explained squares (SSR) must be nonnegative.

They are sums of squares $(\hat{y}_i - \bar{y})^2$, and squares are never negative; geometrically, area cannot be negative.

2. If a different line (not least squares) is used, which quantity necessarily increases, SSE or SST? Why? SSE increases (or stays the same) because the least-squares line minimizes the sum of squared residuals. SST depends only on y and \bar{y} and is unaffected by the choice of line.

3. In this dataset, \mathbb{R}^2 is very close to 1. What does that tell you about the usefulness of x for predicting y?

Nearly all of the total variation in y is explained by the linear relationship with x; x is highly predictive here.

4. What is the lowest possible value of R^2 and what does it mean in context? What is the largest value of R^2 and what does it mean in context?

 $R_{\min}^2 = 0$: using x gives no improvement over predicting everyone with \bar{y} (no explained variation). $R_{\max}^2 = 1$: a perfect linear fit—every residual is 0, so the model explains all the variation.

5. \star Prove SST = SSR + SSE.

Goal. Show $\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum (y_i - \hat{y}_i)^2$.

Step 1: Pointwise decomposition. For each i,

$$y_i - \bar{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \bar{y}).$$

Squaring gives

$$(y_i - \bar{y})^2 = (y_i - \hat{y}_i)^2 + (\hat{y}_i - \bar{y})^2 + 2(y_i - \hat{y}_i)(\hat{y}_i - \bar{y}).$$

Summing over i,

$$\underbrace{\sum (y_i - \bar{y})^2}_{\text{SST}} = \underbrace{\sum (y_i - \hat{y}_i)^2}_{\text{SSE}} + \underbrace{\sum (\hat{y}_i - \bar{y})^2}_{\text{SSR}} + 2\sum (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}).$$

Thus it suffices to show the cross term is 0.

Step 2: Normal equations \Rightarrow orthogonality. Write residuals $e_i = y_i - \hat{y}_i$. For least squares with an intercept, the normal equations give

$$\sum_{i=1}^{n} e_i = 0$$
 and $\sum_{i=1}^{n} e_i x_i = 0$.

Because $\hat{y}_i = \hat{a} + \hat{b} x_i$, we have

$$\sum e_i \, \hat{y}_i = \hat{a} \sum e_i + \hat{b} \sum e_i x_i = 0 + 0 = 0.$$

Now expand the cross term:

$$\sum e_i(\hat{y}_i - \bar{y}) = \underbrace{\sum e_i \hat{y}_i}_{=0} - \bar{y} \underbrace{\sum e_i}_{=0} = 0.$$

Hence $2\sum (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}) = 0$.

Conclusion. The cross term vanishes, so

$$SST = SSR + SSE.$$

Geometric intuition (optional). Let \mathbf{y} be the data vector, $\mathbf{1}$ the all-ones vector, and $X = [\mathbf{1}, \mathbf{x}]$. Then $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto the column space of X. Decompose around the mean: $\mathbf{y} - \bar{y} \mathbf{1} = (\hat{\mathbf{y}} - \bar{y} \mathbf{1}) + (\mathbf{y} - \hat{\mathbf{y}})$, where the two addends are orthogonal. By the Pythagorean theorem,

$$\|\mathbf{y} - \bar{y}\,\mathbf{1}\|^2 = \|\hat{\mathbf{y}} - \bar{y}\,\mathbf{1}\|^2 + \|\mathbf{y} - \hat{\mathbf{y}}\|^2,$$

which is exactly SST = SSR + SSE. *Note:* The intercept is essential—without it, the identity holds with \bar{y} replaced by 0 (about the origin).