LINEAR REGRESSION PRACTICE FROM SLIDES
Mr. Merrick - AP statistics - October 21, 2025

Part A — Standard Regression Examples

Example 1: Penguin Body Mass

Experimental data for Adelie penguins:

Mass (g)

Culmen Depth (mm) Mass (g) Culmen Depth (mm) Mass (g)

17.0 3750 19.1 3875
18.1 3800 19.4 4050
18.3 3700 19.5 4000
18.6 3850 19.7 4025
18.7 3850 19.9 4250
18.8 3700 20.1 4400
18.9 3700 20.3 4500
19.0 3950 20.4 4450
19.0 4000 20.6 4550
19.1 3950 20.8 4600
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1. Verify assumptions for linear regression (LINER):

(a)

(b)

(e)

Linearity: Does the scatterplot suggest a roughly linear trend?

Yes — it shows an approximately linear upward trend, though the residuals suggest slight curvature.
Proceed with caution.

Independence: Are the observations reasonably independent?

Treat as independent for this exercise — each penguin is measured once. The sample of penguins
is small with respect to the population.

Normality: Do the residuals appear roughly normal?

Residuals are fairly symmetric, with no extreme outliers. A histogram or normal probability plot
would support that they are roughly symmetric with no strong skew.

Equal variance: Do the residuals show consistent spread across all fitted values?

Not perfectly — residuals spread slightly wider at larger depths (mild heteroscedasticity). Proceed
with caution.

Random sampling: Were the data collected randomly and representatively?

Assume the penguins are sampled randomly and representative for this example.



2. Regression equation: Mass = a + b - (Depth)
Mass = —1479.48 + 286.892 (Depth) g
3. Interpret a and b:
b ~ 286.9 g/mm: each extra mm of depth predicts ~ 287 g higher mass. a centers the line (Depth
= 0 not in range).
4. Compute and interpret R? and s:
R? = 0.7874 (78.7% explained); s = 143.09 g.

Example 2: Caffeine and Heart Rate

Experimental data:

Caffeine (mg) Heart Rate (bpm)

0 68
50 72
100 75
150 79
200 83
250 84
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1. Assume all conditions for linear regression are met. Determine the regression equation:
The least-squares regression line is HR = 68.476 4 0.066857 - Caffeine.

2. Interpret a and b:
The slope is about 0.0669 bpm per mg of caffeine. This means that, on average, the model predicts an
increase of 0.0669 beats per minute in heart rate for each additional milligram of caffeine consumed.
The intercept is about 68.48 bpm. This represents the predicted average resting heart rate when no
caffeine is consumed (0 mg). While this is within the range of the data, interpretation should still be
made with caution.

3. Compute and interpret R? and s:
The coefficient of determination is R? = 0.9835, which means that about 98.35% of the variation in
heart rate is explained by the linear relationship with caffeine intake. The standard deviation of the
residuals is s = 0.905 bpm, meaning that typical predictions of heart rate from the regression line are
off by about 0.9 bpm.



Example 3: Hooke’s Law
Hooke’s law states F' = kAxz. Data:

Displacement (m) Force (N)

0.01 0.18
0.02 0.41
0.03 0.60
0.04 0.83
0.05 1.03
0.06 1.21
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1. Regression equation: F=a+bAx N
The least-squares regression line is F' = —0.0140 4 20.6857 Az.

2. Interpret a and b:
The slope is about 20.686 N/m. This means that, on average, the model predicts an increase of about
20.686 newtons of force for every additional meter of displacement of the spring. This value represents
the spring constant k. The intercept is about —0.014 N. This represents the predicted force when
displacement is 0 m. Because an ideal spring would give 0 N at 0 m, this small negative intercept
likely reflects rounding or measurement error.

3. Compute and interpret R? and s:
The coefficient of determination is R? = 0.9987, which means that about 99.87% of the variation in
force is explained by the linear relationship with displacement. The standard deviation of the residuals
is s = 0.01563 N, which means that typical predictions of force from the regression line are off by
about 0.016 newtons.



Transformations and Linearization

Cars: Horsepower vs. Fuel Efficiency

Car hp mpg Car hp mpg
Mazda RX4 110 21.0 Dodge Challenger 150 15.5
Mazda RX4 Wag 110 21.0 AMC Javelin 150 15.2
Datsun 710 93 228 Camaro 728 245 13.3
Hornet 4 Drive 110 214 Pontiac Firebird 175 19.2
Hornet Sportabout 175  18.7 Fiat X1-9 66 27.3
Valiant 105 18.1 Porsche 914-2 91 26.0
Duster 360 245 14.3 Lotus Europa 113 30.4
Merc 240D 62 244 Ford Pantera L 264 15.8
Merc 230 95 22.8 Ferrari Dino 175 19.7
Merc 280 123 19.2 Maserati Bora 335 15.0
Merc 280C 123 17.8 Volvo 142E 109 21.4
Merc 450SE 180 16.4 Chrysler Imperial 230 14.7
Merc 450SL 180 17.3 Lincoln Continental 215 10.4
Merc 450SLC 180 15.2 Cadillac Fleetwood 205 10.4
Fiat 128 66 324 Toyota Corolla 65 33.9
Honda Civic 52 304 Toyota Corona 97 21.5

Dataset: mtcars (32 cars). Relationship between mpg and hp is nonlinear and decreasing.
We will test two models: Model (i): mpg vs. In(hp) Model (ii): In(mpg) vs. In(hp).

1. What are the regression equations for both models?

(i) mpg = 72.6405 — 10.7642 In(hp)

—

(ii) In(mpg) = 5.545381 — 0.530092 In(hp) (= mpg ~ 256.052 hp->30092)

2. Which model has the larger R? value? Which appears to fit better?
RY) =0.7204, R, = 0.7157. Model (i) is slightly better.

3. After fitting each model, make a residual plot (residuals vs. fitted values). Which model shows residuals
that look most like random noise (centered at 0, with constant spread and no clear pattern)?

Model (i) looks slightly more random than Model (ii), consistent with its slightly larger R2.



Integrated Rate Laws — Choose Order by R?

For each reaction:

1) Make three transformed plots vs. time: [A] (zeroth), In[A] (first), and 1/[A] (second).
2) Fit a straight line to each and record its R2.

3) Residual-plot diagnostic: For each transform, also draw a residual plot (residual vs. time). Favor the
transform whose residuals look most like random noise centered at 0 with roughly constant spread
and no structure.

4) Choose the order with the largest R? (and the best residual plot). Then read k from the slope
(remember signs).

Reaction 1. 2N30(g) — 2Nay(g) + O2(g) (Pt).

Time (s) 0 10 20 30 40 50 60 70 80 90
[A] (mol/L) 0.800 0.715 0.636 0.550 0.491 0.405 0.333 0.235 0.150 0.086

° Y(;ur work: compute RZ,., R%rst, Rgecond; inspect residuals; choose the order; find k from slope.
R

2o = 0.99885, R2 . =0.91043, k2, 4 = 0.68832 = zeroth order.

Line: [A] = 0.7980 — 0.0079533¢; k& = 7.9533 x 1073 molL's™!. Residuals are pattern-free and
centered near 0 with equal spread.

Reaction 2. 2H303(aq) — 2H20(1) + O2(g) (KI).

Time (s) 0 20 40 60 80 100 120 140 160 180
[A] (mol/L) 1.000 0.815 0.665 0.531 0.441 0.352 0.285 0.230 0.185 0.145
e Your work: compute RZ, R?irst, Rgecond? inspect residuals; choose the order; find k from slope.
RZ,, =0.094112, RZ = 0.99956, R2, . = 0.92276 = first order.

Line: In[A] = 0.0137308 — 0.0106545¢; k = 0.0106545 s~!. Residuals are pattern-free and centered
near 0 with equal spread.

Reaction 3. 217 (aq) +S202 (aq) — Iz(aq) +2S03™ (aq).

Time (s) 0 10 20 30 40 50 60 70 80 90
[A] (mol/L) 0.500 0.397 0.319 0.263 0.205 0.179 0.151 0.130 0.112 0.093

e Your work: compute RZ, Rﬁrst, R? ; inspect residuals; choose the order; find k from slope.

second’

RZ,., =0.90901, RZ . = 0.99308, k2, 4= 0.97386 = first order.
Line: In[A] = —0.763590 — 0.0183543¢; k = 0.0183543 s~!. Residuals are pattern-free and centered

near 0 with equal spread.



TI-84 Quick Card: Regression & Diagnostic Plots

TI-84 Quick Commands

Before you start (do this once): Turn on 7 and R2.

Keys: |2nd |0 (CATALOG) | — type D to jump — select DiagnosticOn — |ENTER || ENTER |

You should see “Done.” After this, regressions will display r and R2.

a) Enter data (L; =z, Ly = y).

Keys: ‘STAT‘ — ‘ 1:Edit... ‘ — type x in Ly and y in Lo.

If old data are in the way: ’ STAT\ — \4:C1rList \ L1, L2 (then re-enter data).
Tip: If your = or y are in different lists, remember which lists they are in (e.g., Ls, Ly).

b) Run linear regression and store the equation in Y;.
Keys: \ STAT\ — \ CALC\ — choose LinReg(a+bx).
On the command line, type the lists and where to store the model:

LinReg(ax+b) L1, L2, V)

To paste Yi: |VARS| — | Y-VARS | — [ 1:Function| —|1:Y; | — [ENTER|.

Then press: (twice if needed) to run.

What you should see: a (intercept), b (slope), 7, R?. The graphing screen now has Y; = a + bX loaded.
c) Scatterplot with the fitted line on top.

Keys: (STAT PLOT) — — [on]

Set Type: Scatter Xlist: L; Ylist: Lo Mark: any.
Graph it: \ZOOM\ — \ 9:ZoomStat \

You should now see your points with the regression line Y1 overlaid.

d) Residual plot (checks curvature and equal spread).
Residuals are automatically saved in list RESID.

Keys: (STAT PLOT) — — [On].

Set Type: Scatter Xlist: L;  Ylist: RESID.

(RESID lives in [2nd ]| STAT (LIST) | -+ NAMES menu — scroll to RESID.)

Graph it: \ZOOM\ — \ 9:ZoomStat \

Interpretation: good residual plot = random cloud around 0, no curve/pattern, roughly constant vertical
spread.

e) Normal probability plot of residuals (checks normality).

Keys: (STAT PLOT) — — [0on]

Set Type: Normal Prob Plot (last icon) Data List: RESID.
Graph it: \ZOOM\ — \ 9:ZoomStat \
Interpretation: points close to a straight line = residuals are roughly normal.

Tips & Troubleshooting

e If nothing shows: ensure Plot1/Plot2/Plot3 are On and the correct lists (e.g., L1, Lo, RESID) are selected.

e If r or R? are missing: redo @ — DiagnosticOn — .
e To model transformed variables (e.g., Inz, Iny): in , move to L3, type 1n( ) then

ENTER | Do the same for Ly if needed, then run LinReg(ax+b) on L3, L4, storing to Y7 again.

e Weird graphs? Clear extra equations in and turn off unused Stat Plots.




