

SAMPLE SIZE FOR ESTIMATING A POPULATION PROPORTION

AP Statistics · Mr. Merrick · February 3, 2026

When planning a confidence interval for a population proportion p , we often want to know how large a sample is needed to guarantee a desired margin of error.

Margin of error for a proportion

For a one-sample z interval,

$$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}$$

The margin of error is

$$ME = z^* \sqrt{\frac{p(1 - p)}{n}}$$

where p is a planning value for the population proportion. To guarantee a margin of error no larger than a chosen value ME , solve for n :

$$ME = z^* \sqrt{\frac{p(1 - p)}{n}} \Rightarrow n = \frac{(z^*)^2 p(1 - p)}{ME^2}$$

Always round up to the nearest whole number.

Why $p = 0.50$ is the most conservative choice

If no prior estimate of p is available, we choose a value that makes the required sample size n as large as possible. This occurs when $p(1 - p)$ is maximized. Let

$$f(p) = p(1 - p), \quad 0 \leq p \leq 1.$$

$$f'(p) = 1 - 2p.$$

Set the derivative equal to zero:

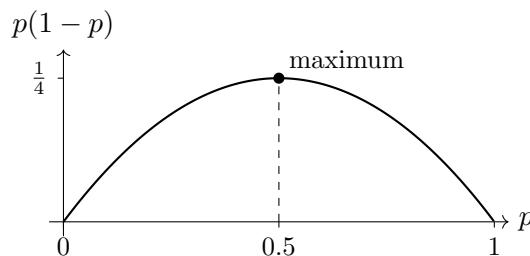
$$1 - 2p = 0 \Rightarrow p = \frac{1}{2}.$$

The second derivative is

$$f''(p) = -2 < 0,$$

so this critical point is a maximum. Therefore,

$$\max_{0 \leq p \leq 1} p(1 - p) = \frac{1}{4}.$$



Using $p = 0.50$ produces the largest possible margin of error and guarantees the sample size will be large enough regardless of the true value of p .

Practice

1. No prior estimate

A school wants to estimate the proportion of students with part-time jobs. They want a 95% confidence interval with $ME \leq 0.03$. Find the required sample size.

2. Using a prior estimate

A previous survey suggests $p \approx 0.32$. Find the required sample size for a 90% confidence interval with $ME \leq 0.04$.

3. Comparing conservative vs. informed planning

A city wants a 99% confidence interval with $ME \leq 0.02$.

1. Find n using no prior estimate.
2. Find n assuming $p \approx 0.70$.