INTRO: RANDOM VARIABLES

Mr. Merrick · September 20, 2025

Consider the random sample from tikz village shown below. Tabulate the sample into a tidy data-frame.

Career: Business Weight: 81 kg Height: 178 cm Income: \$132k Pets: 0

Career: Business

Weight: 88 kg Height: 182 cm

Income: \$149k

Pets: 1

Career: Pilot

Weight: 86 kg

Height: 184 cm

Income: \$181k

Pets: 1

Career: Chef

Weight: 69 kg

Income: \$57k

Pets: 3

Career: Physician

Weight: 70 kg

Height: $177~\mathrm{cm}$

Income: \$193k

Pets: 0

Career: Nurse Weight: 73 kg Weight: 66 kg Height: 171 cm Height: 168 cm Income: \$62k Income: \$94k Pets: 2 Pets: 1

Career: Nurse

Weight: 72 kg

Income: \$88k

Pets: 0

Career: Nurse

Weight: 64 kg

Height: 165 cm

Income: \$86k

Pets: 1

Career: Physician

Weight: 82 kg

Height: 188 cm

Income: \$239k

Pets: 0

Height: 185 cm

Income: \$228k

Pets: 1

Career: Physician

Weight: 74 kg

Height: 179 cm

Income: \$204k

Pets: 2

Career: Chef

Weight: 82 kg

Height: 178 cm

Income: \$67k

Pets: 1

Career: Pilot

Weight: 75 kg

Height: 178 cm

Income: \$159k

Height: 181 cm

Income: \$172k

Pets: 0

Career: Pilot

Weight: 79 kg

Income: \$165k

Pets: 1

Pets: 0

Career: Chef

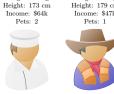
Weight (kg)

Career

Height (cm)

Income (\$k)

Pets



Weight: 85 kg Height: 183 cm

Pets: 1

Career: Physician

Weight: 73 kg

Height: 176 cm

Income: \$212k

Pets: 0

Career: Nurse Career: Pilot Weight: 67 kg Weight: 88 kg Height: 169 cm Height: 185 cm Income: \$90k Income: \$186k

Pets: 1

Career: Nurse

Weight: 69 kg

Height: $170~\mathrm{cm}$

Income: \$95k

Height: 180 cm Income: \$112k Pets: 0

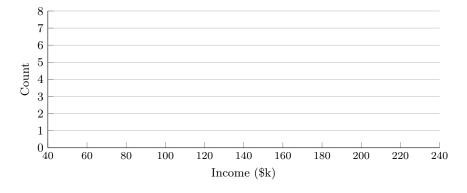
Career: Business Weight: 84 kg Height: 180 cm Income: \$138k Pets: 1

Career: Chef Weight: 70 kg Height: 169 cm Income: \$55k Pets: 1

Income: \$53k

1. How many *variables* were recorded from the sample? _____

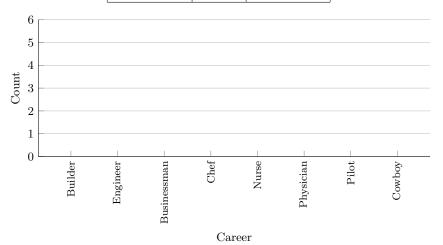
How many observations?


2. Classify each variable (circle one per section).

Variable		Type	Scale				
	Categorical	Quantitative — Discrete.	Quantitative — Continuous	Nominal	Ordinal	Ratio	Interval
Career	0	0	0	0	0	0	0
Weight	0	0	0	0	0	0	0
Height	0	0	0	0	0	0	0
Income	0	0	0	0	0	0	0
Pets	0	0	0	0	0	0	0

3. Histogram of Income (in \$k)

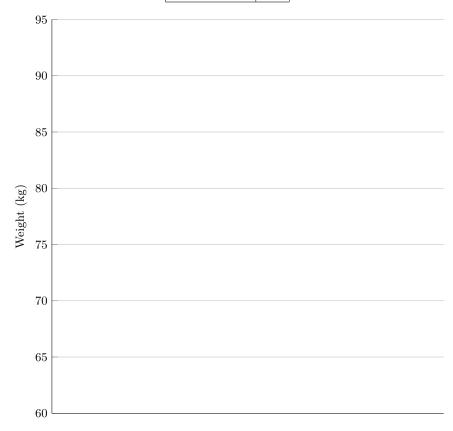
Tally the counts in each bin (half-open: [a,b)). Add dotted vertical lines for the sample *median* and *mean*.


Bin	Count
[40,60)	
[60,80)	
[80,100)	
[100,120)	
[120,140)	
[140,160)	
[160,180)	
[180,200)	
[200,220)	
[220,240)	

4. Bar Chart of Career

Tally the counts and proportions by career, then draw the bars.

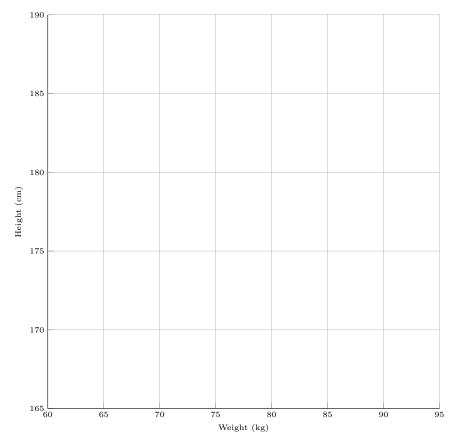
Career	Count	Proportion
Builder		
Engineer		
Businessman		
Chef		
Nurse		
Physician		
Pilot		
Cowboy		



5. Box plot of Weights (kg)

Use the sorted weights below to compute the five-number summary, then sketch the box plot. In solutions mode the box is drawn automatically.

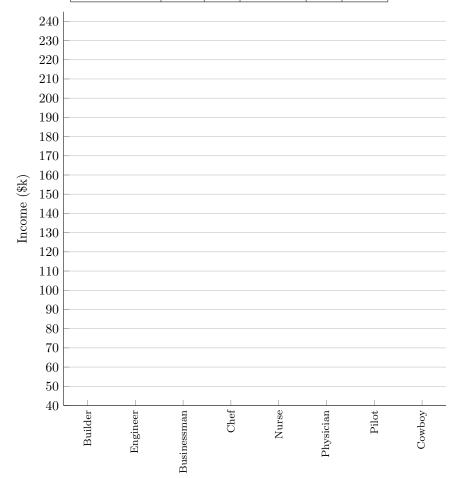
64	66	67	69	69	70	70
72	73	73	75	76	77	77
78	79	79	80	81	82	82
82	83	84	84	85	85	86
86	88	88	89	90	92	


Minimum	
Q1	
Median (Q2)	
Q3	
Maximum	

6. Scatter plot: Weight (kg) vs. Height (cm)

Use the tabulated pairs (kg, cm) to plot the scatter. In solutions mode the points are drawn automatically.

(W,H)									
					171				
					187				
					176				
					165				
80	182	90	186	85	181	69	170	82	188
					179				
88	185	83	180	84	180	70	169	85	183



7. What does the scatter plot suggest about the relationship between Weight and Height? Briefly describe the direction and strength.

8. Income by Career — Pairwise Box Plots

Draw pairwise boxplots so that each box summarizes the income distribution (in k) for a career.

Career	Min	Q1	Median	Q3	Max
Builder	72	72	75	78	78
Engineer	112	112	118	127	127
Businessman	121	132	138	149	171
Chef	55	57	62	64	67
Nurse	86	88	90	94	95
Physician	193	204	212	228	239
Pilot	159	165	172	181	186
Cowboy	47	51	53	55	58

9. Basic Probability

Let one person be selected uniformly at random from the 35 individuals. Provide answers as exact fractions and/or decimals.

- 1. $P(Physician) = \underline{\hspace{1cm}}$
- 2. P(Physician and Income > 200k) =
- 3. $P(\text{Income} \ge 100\text{k}) =$ ______
- 4. $P(\text{Engineer} \mid \text{Income} \ge 100\text{k}) = \underline{\hspace{1cm}}$
- 5. $P(Pilot \text{ or } Physician) = \underline{\hspace{1cm}}$
- 6. $P(\text{Pets} \ge 2) =$
- 7. $P(40k \le Income < 100k) =$ _____