Intro: Random Variables

Mr. Merrick · September 15, 2025

Consider the random sample from tikz village shown below. Tabulate the sample into a tidy data-frame.

Career: Engineer Weight: 89 kg Height: 186 cm Income: \$127k

Pets: 2

Career: Busines Weight: 90 kg Height: 186 cm Income: \$171k Pets: 1

Career: Physician Weight: 73 kg Height: 176 cm Income: \$212k

Career: Business Weight: 81 kg Height: 178 cm Income: \$132k

Pets: 1

Career: Pilot

Weight: 86 kg

Height: 184 cm

Income: \$181k

Pets: 1

Career: Builder

Weight: 85 kg

Height: 181 cm

Income: \$72k

Pets: 2

Career: Nurse

Weight: 67 kg

Height: 169 cm

Income: \$90k

Pets: 0

Weight: 73 kg Height: 171 cm Income: \$62k

Career: Chef

Weight: 69 kg

Income: \$57k

Pets: 3

Career: Physician

Weight: 70 kg

Height: 177 cm

Income: \$193k

Pets: 0

Career: Nurse

Weight: 69 kg

Height: 170 cm

Income: \$95k

Pets: 2

Career: Pilot

Weight: 88 kg

Height: 185 cm

Income: \$186k

Pets: 1

Weight: 66 kg Height: 168 cm Income: \$94k

Career: Nurse

Weight: 72 kg

Income: \$88k

Career: Nurse

Weight: 64 kg

Height: 165 cm

Income: \$86k

Pets: 1

Weight: 83 kg

Height: 180 cm

Income: \$112k

Pets: 0

Pets: 0

Weight: 78 kg Height: 185 cm Income: \$228k Pets: 1

Career: Physician Weight: 74 kg Height: 179 cm Income: \$204k Pets: 2

Career: Pilot Weight: 79 kg Income: \$165k Pets: 1

Income: \$67k

Height: 178 cm Pets: 1

Career: Pilot Weight: 75 kg Height: 178 cm Income: \$159k Pets: 0

Career: Engineer Career: Business Weight: 84 kg Height: 180 cm Income: \$138k Pets: 1

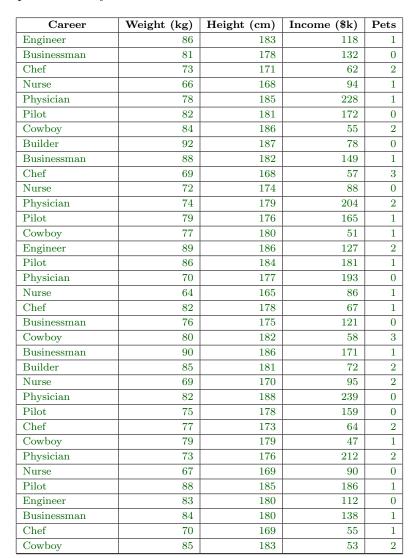
Career: Pilot Career: Cowboy Weight: 82 kg Weight: 84 kg Height: 181 cm Height: 186 cm Income: \$172k Income: \$55k Pets: 0 Pets: 2

Career: Cowboy Weight: 77 kg Height: 180 cm Income: \$51k Pets: 1

Career: Business Career: Cowboy Weight: 76 kg Weight: 80 kg Height: 175 cm Height: 182 cm Income: \$121k Income: \$58k Pets: 3

Career: Cowboy Career: Chef Weight: 77 kg Weight: 79 kg Height: 173 cm Height: 179 cm Income: \$64k Income: \$47k Pets: 1 Pets: 2

Career: Cowbov


Weight: 85 kg

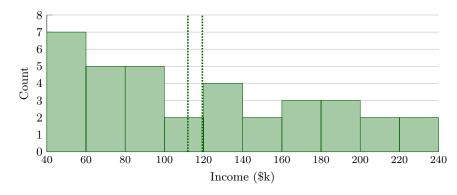
Height: 183 cm

Income: \$53k

Career: Chef Weight: 70 kg Height: 169 cm Income: \$55k Pets: 1

1. How many variables were recorded from the sample? 5

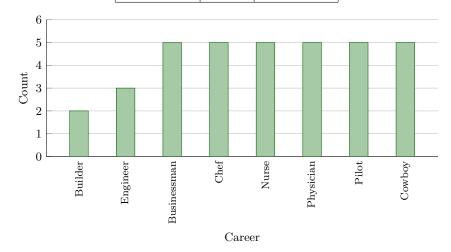
How many observations? 35


2. Classify each variable (circle one per section).

Variable		Type	Scale				
	Categorical	Quantitative — Discrete.	Quantitative — Continuous	Nominal	Ordinal	Ratio	Interval
Career	✓	0	0	✓	0	0	0
Weight	0	0	✓	0	0	√	0
Height	0	0	✓	0	0	√	0
Income	0	0	√	0	0	√	0
Pets	0	✓	0	0	0	√	0

3. Histogram of Income (in \$k)

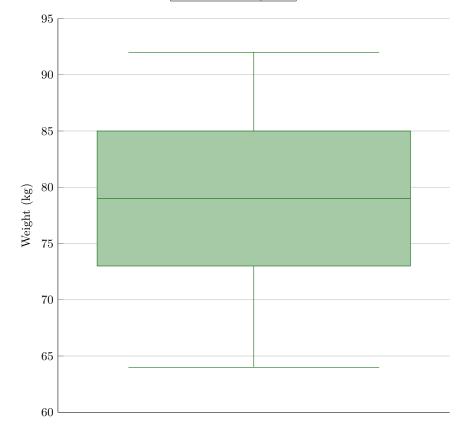
Tally the counts in each bin (half-open: [a,b)). Add dotted vertical lines for the sample *median* and *mean*.


Bin	Count
[40,60)	7
[60,80)	5
[80,100)	5
[100,120)	2
[120,140)	4
[140,160)	2
[160,180)	3
[180,200)	3
[200,220)	2
[220,240)	2

4. Bar Chart of Career

Tally the counts and proportions by career, then draw the bars.

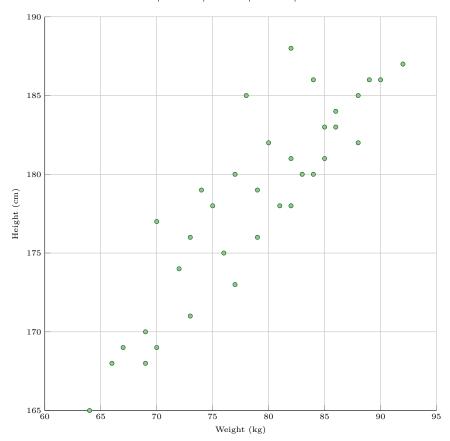
Career	Count	Proportion
Builder	2	0.06
Engineer	3	0.09
Businessman	5	0.14
Chef	5	0.14
Nurse	5	0.14
Physician	5	0.14
Pilot	5	0.14
Cowboy	5	0.14



5. Box plot of Weights (kg)

Use the sorted weights below to compute the five-number summary, then sketch the box plot. In solutions mode the box is drawn automatically.

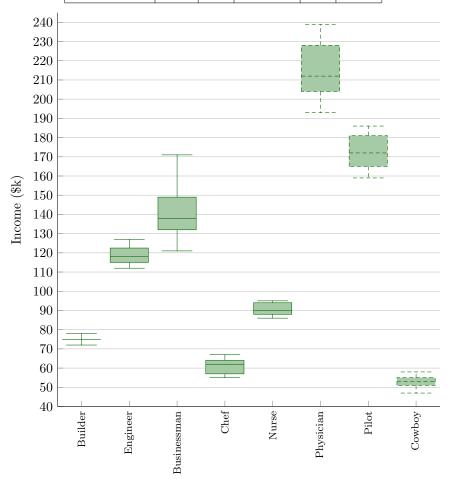
64	66	67	69	69	70	70
72	73	73	75	76	77	77
78	79	79	80	81	82	82
82	83	84	84	85	85	86
86	88	88	89	90	92	


Minimum	64
Q1	73
Median (Q2)	79
Q3	85
Maximum	92

6. Scatter plot: Weight (kg) vs. Height (cm)

Use the tabulated pairs (kg, cm) to plot the scatter. In solutions mode the points are drawn automatically.

(W,H)		(W	7,H)	(W	7,H)	(W,H)		(W	7,H)	
	86	183	81	178	73	171	66	168	78	185
								182		
								180		
	86	184	70	177	64	165	82	178	76	175
	80	182	90	186	85	181	69	170	82	188
	75	178	77	173	79	179	73	176	67	169
	88	185	83	180	84	180	70	169	85	183


7. What does the scatter plot suggest about the relationship between Weight and Height? Briefly describe the direction and strength.

There is a positive, roughly linear association: taller individuals tend to weigh more (moderate strength).

8. Income by Career — Pairwise Box Plots

Draw pairwise boxplots so that each box summarizes the income distribution (in k) for a career.

Career	Min	$\mathbf{Q}1$	Median	Q3	Max
Builder	72	72	75	78	78
Engineer	112	112	118	127	127
Businessman	121	132	138	149	171
Chef	55	57	62	64	67
Nurse	86	88	90	94	95
Physician	193	204	212	228	239
Pilot	159	165	172	181	186
Cowboy	47	51	53	55	58

9. Basic Probability

Let one person be selected uniformly at random from the 35 individuals. Provide answers as exact fractions and/or decimals.

- 1. $P(Physician) = \frac{5}{35} \approx 0.143$
- 2. $P(\text{Physician and Income} > 200\text{k}) = \frac{4}{35} \approx 0.114$
- 3. $P(\text{Income} \ge 100\text{k}) = \frac{18}{35} \approx 0.514$
- 4. $P(\text{Engineer} \mid \text{Income} \ge 100\text{k}) = \frac{3}{18} = \frac{1}{6} \approx 0.167$
- 5. $P(Pilot \text{ or Physician}) = \frac{10}{35} = \frac{2}{7} \approx 0.286$
- 6. $P(\text{Pets} \ge 2) = \frac{14}{35} = \frac{2}{5} = 0.400$
- 7. $P(40k \le Income < 100k) = \frac{17}{35} \approx 0.486$