Data Science · November 20, 2025 Mr. Merrick

Overview

We will use the **Heart Disease (CDC BRFSS)** dataset (from Kaggle), which contains responses from over 400,000 U.S. adults. For this activity you will focus on categorical variables and two-variable relationships (e.g., HeartDisease vs AgeCategory).

Key Variables

Some of the main variables you will use:

- HeartDisease: Has the respondent ever been told they have coronary heart disease (CHD) or myocardial infarction (MI)? (Yes/No)
- AgeCategory: Categorical age groups (e.g., 18-24, 25-29, ...).
- GenHealth: Self-reported general health (e.g., Excellent, Very good, Good, Fair, Poor).
- Smoking: Has the person smoked at least 100 cigarettes in their life? (Yes/No)
- SleepTime: Numeric: hours of sleep in a typical 24-hour period.
- Additional categorical variables you might explore: Diabetic, PhysicalActivity, Asthma, KidneyDisease,
 Gender, Race.

Guiding Questions (Two-Variable Categorical Focus)

Answer each question using R and include both your **plots** and **written interpretations**. When you compare two variables, treat **HeartDisease** as the **outcome** and other variables as **explanatory**.

Q1. How common is heart disease in this sample?

Create a bar chart showing how many people in the dataset have HeartDisease = "Yes" and "No".

- (a) Use counts or a simple table to estimate the probability that a randomly chosen adult in this dataset has heart disease.
- (b) Suppose someone is 18–24 years old. Would you use the same overall probability from part (a) to estimate their chance of having heart disease? Why or why not?
- (c) Estimate the probability that a person has heart disease **given** that they are in the 18–24 AgeCategory. Explain how this conditional probability is different from your answer in part (a).

Q2. Heart disease vs. general health (counts).

Make a bar chart with GenHealth on the x-axis and bars filled by HeartDisease. This shows the number of people in each general health category, split by whether they have heart disease.

- Why is it hard to compare the risk of heart disease across GenHealth categories using counts alone?
- Which categories have the largest sample sizes, and why does that matter?

Q3. Heart disease vs. general health (relative bar chart).

Re-make your plot from Q2 as a **relative bar chart** by using **position = "fill"** in **geom_bar**. This makes each bar show **proportions** instead of raw counts.

- Compare the proportion of people with heart disease in each GenHealth category.
- From this plot, would you say there is an **association** between general health and heart disease? Explain briefly.

Q4. Heart disease across age categories.

Use a relative bar chart to compare the proportion of heart disease across AgeCategory.

- Which age groups appear to have the **lowest** estimated risk of heart disease?
- Which age groups appear to have the **highest** estimated risk?
- How might this pattern connect to what you know about heart disease and age?

Q5. Heart disease and smoking.

Use a relative bar chart to compare the proportion of heart disease for people who **have** smoked at least 100 cigarettes (Smoking = "Yes") versus those who have not.

- Does the proportion of heart disease look higher among smokers, non-smokers, or are they similar?
- What might this suggest about the relationship between smoking and heart disease in this dataset?

Q6. Sleep time: what is "normal"?

Make a histogram of SleepTime for all adults in the dataset.

- Based on the distribution, what range of sleep times would you classify as "normal" for most people (e.g., 6–9 hours)? Explain how you chose your range.
- Are there many people with very short or very long sleep times? How might those extreme values affect your conclusions?

Q7. Heart disease and sleep (after trimming).

First, filter the dataset to include only people with SleepTime between 2 and 15 hours. Then create either:

- a relative bar chart of SleepTime grouped into categories (e.g., Low, Normal, High) vs. HeartDisease, or
- a relative bar chart where you treat SleepTime as a discrete numeric x-axis and fill by HeartDisease.
- Do people who sleep much less or much more than your "normal" range appear to have a higher proportion of heart disease?

• How could confounding factors (like age or general health) influence this pattern?

Q8. Your choice: explore one more association.

Choose one additional categorical variable (for example, Diabetic, Physical Activity, Asthma, Kidney Disease, or Gender) and use a relative bar chart to compare heart disease across its categories.

- State clearly which variable you chose and why.
- Describe any association you see between that variable and heart disease.
- If you were a public health researcher, would this association make you curious to investigate further? Explain briefly.

Dataset Description and Citation

The dataset you are using is a processed subset of a larger CDC public health survey.

- The original data come from the **Behavioral Risk Factor Surveillance System (BRFSS)**, an annual telephone survey that collects data on health-related risk behaviors, chronic health conditions, and use of preventive services in all 50 states, the District of Columbia, and several U.S. territories.
- The version used here (often distributed as heart.csv) includes variables such as heart disease status, age category, smoking, BMI, diabetes, sleep time, and more.
- Example citation: Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey Data. Processed heart disease subset accessed via Kaggle.

Tutorial Solutions (R)

Q1. Overall Heart Disease Prevalence

```
# Bar chart of HeartDisease counts
heart %>%
ggplot(aes(x = HeartDisease)) +
geom_bar() +
labs(
title = "Counts of Heart Disease in the Sample",
x = "Heart Disease Status",
y = "Number of Adults"
) +
theme_classic()
```

```
# Table of counts and estimated probabilities
table(heart$HeartDisease)

# Probability distribution for HeartDisease
table(heart$HeartDisease) / length(heart$HeartDisease)
```

```
# Conditional probability given AgeCategory = "18-24"
heart %>%
filter(AgeCategory == "18-24") %>%
select(HeartDisease) %>%
table()

# Two-way cross-tab
table(heart$HeartDisease, heart$AgeCategory)
```

Q2. Heart Disease vs General Health (Counts)

```
heart %>%
ggplot(aes(x = GenHealth, fill = HeartDisease)) +
geom_bar(position = 'dodge') +
labs(
title = "Heart Disease Counts by General Health",
x = "General Health",
y = "Count of Adults",
fill = "Heart Disease"
) +
theme_classic() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Q3. Heart Disease vs General Health (Relative Bar)

```
p_q3 <- heart %>%
    ggplot(aes(x = GenHealth, fill = HeartDisease)) +
    geom_bar(position = "fill") +
    labs(
        title = "Proportion with Heart Disease by General Health",
        x = "General Health",
        y = "Proportion (within each health category)",
        fill = "Heart Disease"
    ) +
    scale_y_continuous(labels = percent_format()) +
    theme_classic() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))
    print(p_q3)
```

Q4. Heart Disease vs Age Category

```
p_q4 <- heart %>%
    ggplot(aes(x = AgeCategory, fill = HeartDisease)) +
    geom_bar(position = "fill") +
    labs(
        title = "Proportion with Heart Disease by Age Category",
        x = "Age Category",
        y = "Proportion (within age group)",
        fill = "Heart Disease"
    ) +
    scale_y_continuous(labels = percent_format()) +
    theme_classic() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))
    print(p_q4)
```

Q5. Heart Disease vs Smoking

```
p_q5 <- heart %>%
    ggplot(aes(x = Smoking, fill = HeartDisease)) +
    geom_bar(position = "fill") +
    labs(
        title = "Proportion with Heart Disease by Smoking Status",
        x = "Smoking (100+ cigarettes in life)",
        y = "Proportion (within smoking group)",
        fill = "Heart Disease"
    ) +
    scale_y_continuous(labels = percent_format()) +
    theme_classic()

print(p_q5)
```

Q6. Distribution of Sleep Time

```
p_q6 <- heart %>%
ggplot(aes(x = SleepTime)) +
geom_histogram(bins = 30, color = "white") +
labs(
title = "Distribution of Sleep Time",
x = "Hours of Sleep in 24 Hours",
y = "Number of Adults"
) +
theme_classic()
print(p_q6)
```

Q7. Heart Disease vs Sleep (Trimmed)

```
# Filter to sleep between 2 and 15 hours
heart_trim <- heart %>%
filter(SleepTime >= 2, SleepTime <= 15)
```

Option A: Treat SleepTime as a discrete variable

```
p_q7a <- heart_trim %>%
    ggplot(aes(x = as.factor(SleepTime), fill = HeartDisease)) +
    geom_bar(position = "fill") +
    labs(
      title = "Proportion with Heart Disease by Sleep Time (2-15 hrs)",
      x = "Sleep Time (hours)",
6
      y = "Proportion (within each sleep hour)",
      fill = "Heart Disease"
    ) +
9
10
    scale_y_continuous(labels = percent_format()) +
    theme_classic() +
11
    theme(axis.text.x = element_text(angle = 90, vjust = 0.5))
12
14 print(p_q7a)
```

Option B: Use sleep categories

```
heart_trim <- heart_trim %>%
    mutate(
2
3
      SleepCategory = case_when(
        SleepTime < 6 ~ "Low",</pre>
4
        SleepTime <= 9 ~ "Normal",</pre>
5
        TRUE ~ "High"
      )
    )
10 p_q7b <- heart_trim %>%
    ggplot(aes(x = SleepCategory, fill = HeartDisease)) +
11
    geom_bar(position = "fill") +
12
    labs(
13
      title = "Proportion with Heart Disease by Sleep Category",
14
      x = "Sleep Category",
15
      y = "Proportion (within sleep category)",
16
      fill = "Heart Disease"
17
18
    ) +
    scale_y_continuous(labels = percent_format()) +
19
20
    theme_classic()
21
22 print(p_q7b)
```

Q8. Explore One More Variable

```
p_q8 <- heart %>%
ggplot(aes(x = Diabetic, fill = HeartDisease)) +
geom_bar(position = "fill") +
labs(
title = "Proportion with Heart Disease by Diabetic Status",
x = "Diabetic Status",
y = "Proportion (within diabetic group)",
fill = "Heart Disease"
) +
scale_y_continuous(labels = percent_format()) +
theme_classic()

print(p_q8)
```