
Intro to Data Science Mr. Merrick

Pokémon Analysis
Data Science · Mr.Merrick · October 8, 2025

Dr. Oak has hired you as a junior data scientist to help him understand patterns and trends in Pokémon
data. Your mission: ask questions, explore creatively, and use R to find insights worth sharing.

Overview

Using the Pokémon dataset, your task is to conduct open-ended exploratory research. You will use R to
clean, visualize, and describe one-variable and simple two-variable patterns that help answer questions
about Pokémon. A detailed description of the dataset can be found on page 2.

Guiding Research Questions (Choose, Combine, or Extend)

Dr. Oak encourages creativity. Use these as inspiration—but feel free to pose your own related questions.
There are no “right answers,” only thoughtful, data-driven ones.

Q1. Summarize the Dataset.
How many observations? How many variables?

Q2. What does it mean for a Pokémon to be “strong” in Pokémon GO?
Define “strength” however you wish (e.g., Combat Power, Attack, or a combination). Which Pokémon
best embody that strength? How common or rare are they?

Q3. How do different Pokémon types vary in their attributes? Do certain types tend to be heavier,
faster, or have higher CP? Are there clear patterns when you look across type distributions?

Q4. Are Legendary Pokémon noticeably stronger than non-Legendaries? How do their stat
distributions compare? Are they uniformly dominant, or do some normal Pokémon rival them?

Q5. Is there an association between a Pokémon’s weight and height? Does size predict other
characteristics like CP or speed? Are certain types (e.g., Flying, Water) exceptions to general trends?

Q6. Have newer generations of Pokémon become stronger or weaker? Compare distributions of
total strength or CP across generations. What trends emerge as new Pokémon are introduced?

Your report should explore at least three of these questions in depth and be submitted as a pdf.

1

Intro to Data Science Mr. Merrick

Dataset Description and Context

The Complete Pokémon Dataset compiled by Rounak Banik (2018) is published on Kaggle. This
dataset consolidates information from the official Pokémon main-series video games (Pokémon Red/Blue
through Pokémon Sun/Moon, Generations I–VII). It includes one row per Pokémon species or form, with
variables describing type, base statistics, generation, and legendary status.

• Citation: Banik, R. (2018). The Complete Pokémon Dataset. Kaggle. Retrieved from https:

//www.kaggle.com/datasets/rounakbanik/pokemon

These base statistics are drawn from Game Freak’s canonical data tables and are consistent with
the in-game Pokédex entries from the core RPG series. No player-specific modifications (e.g., individual
values or effort values) are included—these are species-level attributes.

Relation to Pokémon GO and the Trading Card Game

While all three media (the main games, Pokémon GO, and the Trading Card Game) share the same
Pokémon species, they use different numerical systems for attributes:

System Stats Used Range / Scale Notes

Main Games HP, Attack, Defense, Spe-
cial Attack, Special De-
fense, Speed

1–255 Turn-based RPG; 6 attributes
per Pokémon.

Pokémon GO Attack, Defense, Stamina ∼10–300 Simplified for mobile play; 3
attributes + CP.

Trading Card
Game (TCG)

HP, Attack Power (per
move)

30–340 HP typical Designed for card game bal-
ance.

Table 1: Comparison of stat systems across Pokémon media.

In the main series, base stats form the foundation of a deeper system involving:

• Individual Values (IVs): Random 0–31 bonuses unique to each Pokémon

• Effort Values (EVs): Training-based stat adjustments

• Natures: Personality modifiers that boost or reduce specific stats

Together, these create large individual variation between Pokémon of the same species—an important
concept in probability and variation modeling.

By contrast, Pokémon GO collapses these six core stats into three (Attack, Defense, Stamina) to
suit a real-time mobile environment. Individual variation is introduced via simplified IVs ranging from
0–15 per stat. The game’s “Combat Power (CP)” is then derived from these stats through a multiplicative
formula.

The Trading Card Game (TCG) discards these mechanics entirely, using abstract HP and attack
values chosen for card game balance rather than biological realism or direct translation from the video
games.

2

https://www.kaggle.com/datasets/rounakbanik/pokemon
https://www.kaggle.com/datasets/rounakbanik/pokemon
https://www.kaggle.com/datasets/rounakbanik/pokemon

Intro to Data Science Mr. Merrick

Pokémon Data Science Tutorial — Group Tutorial (R)

Setup and Data Import

We’ll load a few tidy packages, import the CSV, and clean column names.

1 # --- Libraries ---

2 library(readr)

3 library(dplyr)

4 library(ggplot2)

5 library(janitor)

6

7 # --- Load and clean dataset ---

8 pk <- read_csv("pokemon.csv") # ensure this file is in your working directory

9 pk <- clean_names(pk) # e.g., "Sp. Atk" -> "sp_atk"

10

11 # --- Preview the data ---

12 glimpse(pk)

13 summary(pk)

Q1. Summarize the Dataset

Prompt: How many observations (rows)? How many variables (columns)? What are the basic charac-
teristics of the data?

1 # Rows and columns

2 dim(pk)

3

4 # Variable names

5 names(pk)

6

7 # --- Create a total stat variable (sum of base stats) ---

8 # NOTE: Depending on your CSV, the columns are typically: hp, attack, defense, sp_atk, sp_def,

speed.

9 # If your file uses "sp_attack"/"sp_defense", rename them or adjust the line below.

10 pk <- pk %>%

11 mutate(total = hp + attack + defense + sp_atk + sp_def + speed)

12

13 # Simple summary statistics

14 pk %>%

15 summarise(

16 n_pokemon = n(),

17 n_variables = ncol(pk),

18 mean_total = mean(total, na.rm = TRUE),

19 median_total= median(total, na.rm = TRUE)

20)

21

22 # Average total stats by Generation

23 pk %>%

24 group_by(generation) %>%

25 summarise(avg_total = mean(total, na.rm = TRUE))

3

Intro to Data Science Mr. Merrick

Q2. What Does it Mean for a Pokémon to be “Strong”?

Prompt: We’ll define strength as the sum of the six base stats (total). Find the strongest Pokémon
overall and visualize the distribution.

1 # Top 10 Pokemon by total stats

2 pk %>%

3 arrange(desc(total)) %>%

4 select(name, type_1, type_2, total) %>%

5 head(10)

6

7 # Simple histogram of total strength

8 ggplot(pk, aes(x = total)) +

9 geom_histogram(bins = 25, fill = "skyblue", color = "white") +

10 labs(title = "Distribution of Total Pokemon Strength",

11 x = "Total Base Stats", y = "Count")

Q3. How Do Different Types Vary?

Prompt: Compare average strength across primary types and show a type comparison plot.

1 # Average total stats by primary type

2 pk %>%

3 group_by(type_1) %>%

4 summarise(avg_total = mean(total, na.rm = TRUE)) %>%

5 arrange(desc(avg_total))

6

7 # Boxplot comparing types

8 ggplot(pk, aes(x = type_1, y = total)) +

9 geom_boxplot(fill = "lightgreen") +

10 coord_flip() +

11 labs(title = "Total Stats by Primary Type", x = "Type", y = "Total Stats")

Q4. Are Legendary Pokémon Stronger?

Prompt: Compare totals for Legendary vs. non-Legendary. Convert the 0/1 indicator to labeled
categories for plotting.

1 # Summary table by legendary indicator (0/1)

2 pk %>%

3 group_by(is_legendary) %>%

4 summarise(avg_total = mean(total, na.rm = TRUE),

5 count = n())

6

7 # Make a labeled factor for plotting

8 pk <- pk %>%

9 mutate(is_legendary_factored = factor(is_legendary,

10 levels = c(0, 1),

11 labels = c("No", "Yes")))

12

13 # Boxplot: Legendary vs Non-Legendary

14 ggplot(pk, aes(x = is_legendary_factored, y = total, fill = is_legendary_factored)) +

15 geom_boxplot() +

16 labs(title = "Legendary vs Non-Legendary Pokemon",

17 x = "Legendary?",

18 y = "Total Stats") +

4

Intro to Data Science Mr. Merrick

19 scale_fill_manual(values = c("No" = "skyblue", "Yes" = "orange"))

20

21 # Faceted histograms (same y-scale)

22 ggplot(pk, aes(x = total)) +

23 geom_histogram(bins = 25, color = "white", fill = "skyblue") +

24 facet_wrap(~ is_legendary_factored, ncol = 2) +

25 labs(title = "Distribution of Total Base Stats",

26 x = "Total (BST)",

27 y = "Count")

28

29 # Faceted histograms (free y-axis to handle different group sizes)

30 ggplot(pk, aes(x = total)) +

31 geom_histogram(bins = 25, color = "white", fill = "skyblue") +

32 facet_wrap(~ is_legendary_factored, ncol = 2, scales = "free_y") +

33 labs(title = "Distribution of Total Base Stats",

34 x = "Total (BST)",

35 y = "Count")

Q5. Is There an Association Between Height and Weight?

Prompt: Make a simple scatter plot and (optionally) compute correlation.

1 ggplot(pk, aes(x = height_m, y = weight_kg)) +

2 geom_point(alpha = 0.7, color = "darkblue") +

3 labs(title = "Height vs Weight of Pokemon", x = "Height (m)", y = "Weight (kg)")

4

5 # Optional: correlation

6 cor(pk$height_m, pk$weight_kg, use = "complete.obs")

Q6. Have Newer Generations Become Stronger or Weaker?

Prompt: Compare total strength across generations.

1 ggplot(pk, aes(x = factor(generation), y = total, fill = factor(generation))) +

2 geom_boxplot() +

3 labs(title = "Pokemon Strength Across Generations",

4 x = "Generation", y = "Total Stats") +

5 scale_fill_brewer(palette = "Set3")

6

7 pk %>%

8 group_by(generation) %>%

9 summarise(avg_total = mean(total, na.rm = TRUE),

10 median_total = median(total, na.rm = TRUE))

Wrap-Up

We used simple summaries and visuals to explore patterns: overall strength, type differences, legendary
comparisons, size relationships, and generation trends. In future assignments, you’ll extend these ideas
and write short interpretations for each figure or table.

5

Intro to Data Science Mr. Merrick

Python Supplement (pandas + seaborn)

Setup & Data Import

1 # If needed:

2 # !pip install pandas seaborn matplotlib

3

4 import pandas as pd

5 import seaborn as sns

6 import matplotlib.pyplot as plt

7

8 sns.set_theme(context="notebook", style="whitegrid")

9

10 # Load CSV (same directory as your notebook / script)

11 pk = pd.read_csv("pokemon.csv")

12

13 print(pk.shape)

14 print(pk.columns.tolist())

Q1. Summarize the Dataset

1 # Create ’total’ (Base Stat Total) if you have these columns

2 stat_cols = ["hp", "attack", "defense", "sp_atk", "sp_def", "speed"]

3 missing = [c for c in stat_cols if c not in pk.columns]

4 if missing:

5 print("Missing:", missing)

6 else:

7 pk["total"] = pk[stat_cols].sum(axis=1)

8

9 # Rows, columns

10 n_rows, n_cols = pk.shape

11 print("observations:", n_rows, "| variables:", n_cols)

12

13 # Simple summary

14 if "total" in pk.columns:

15 print(pk["total"].describe()[["mean","50%"]]) # mean, median

16

17 # Average total by Generation

18 if {"generation","total"}.issubset(pk.columns):

19 print(pk.groupby("generation")["total"].mean())

Q2. What Does it Mean to be “Strong”?

1 # Define strength as ’total’ and list strongest Pok\’emon

2 cols = [c for c in ["name", "type_1", "type_2", "total"] if c in pk.columns]

3 if "total" in pk.columns and cols:

4 print(pk.sort_values("total", ascending=False)[cols].head(10))

5

6 # Histogram of total

7 if "total" in pk.columns:

8 plt.figure()

9 sns.histplot(pk["total"], bins=25)

10 plt.title("Distribution of Total Pok\’emon Strength")

6

Intro to Data Science Mr. Merrick

11 plt.xlabel("Total Base Stats"); plt.ylabel("Count")

12 plt.tight_layout(); plt.show()

Q3. How Do Types Vary?

1 # Average total by primary type

2 if {"type_1","total"}.issubset(pk.columns):

3 avg_by_type = (pk.groupby("type_1")["total"]

4 .mean().reset_index(name="avg_total")

5 .sort_values("avg_total", ascending=False))

6 print(avg_by_type)

7

8 # Boxplot by type

9 if {"type_1","total"}.issubset(pk.columns):

10 plt.figure(figsize=(8,6))

11 sns.boxplot(data=pk, x="type_1", y="total")

12 plt.title("Total Stats by Primary Type")

13 plt.xlabel("Type"); plt.ylabel("Total Stats")

14 plt.xticks(rotation=45, ha="right")

15 plt.tight_layout(); plt.show()

Q4. Are Legendary Pokémon Stronger?

1 # Summaries by legendary status

2 if {"is_legendary","total"}.issubset(pk.columns):

3 print(pk.groupby("is_legendary")["total"]

4 .agg(avg_total="mean", count="size")

5 .reset_index())

6

7 # Make a labeled flag for plotting

8 if pk["is_legendary"].dtype != "O":

9 pk["is_legendary_flag"] = pk["is_legendary"].astype(int)

10 else:

11 pk["is_legendary_flag"] = pk["is_legendary"].astype(str).str.lower().map({

12 "0":"0","1":"1","false":"0","true":"1","no":"0","yes":"1"

13 }).fillna("0").astype(int)

14 pk["is_legendary_label"] = pk["is_legendary_flag"].map({0:"No", 1:"Yes"})

15

16 # Boxplot

17 plt.figure()

18 sns.boxplot(data=pk, x="is_legendary_label", y="total")

19 plt.title("Legendary vs Non-Legendary (Total Stats)")

20 plt.xlabel("Legendary?"); plt.ylabel("Total Stats")

21 plt.tight_layout(); plt.show()

22

23 # Faceted histograms (same y)

24 g = sns.FacetGrid(pk, col="is_legendary_label", sharey=True)

25 g.map_dataframe(sns.histplot, x="total", bins=25)

26 g.set_axis_labels("Total (BST)", "Count")

27 g.fig.subplots_adjust(top=0.85)

28 g.fig.suptitle("Distribution of Total Base Stats")

29 plt.show()

30

31 # Faceted histograms (free y)

7

Intro to Data Science Mr. Merrick

32 g2 = sns.FacetGrid(pk, col="is_legendary_label", sharey=False)

33 g2.map_dataframe(sns.histplot, x="total", bins=25)

34 g2.set_axis_labels("Total (BST)", "Count")

35 g2.fig.subplots_adjust(top=0.85)

36 g2.fig.suptitle("Distribution of Total Base Stats (free y)")

37 plt.show()

Q5. Height vs Weight

1 if {"height_m","weight_kg"}.issubset(pk.columns):

2 plt.figure()

3 sns.scatterplot(data=pk, x="height_m", y="weight_kg", alpha=0.7)

4 plt.title("Height vs Weight of Pok\’emon")

5 plt.xlabel("Height (m)"); plt.ylabel("Weight (kg)")

6 plt.tight_layout(); plt.show()

7

8 print("Correlation:",

9 pk[["height_m","weight_kg"]].corr().iloc[0,1])

Q6. Generations: Stronger or Weaker?

1 if {"generation","total"}.issubset(pk.columns):

2 plt.figure()

3 sns.boxplot(data=pk, x=pk["generation"].astype("category"), y="total")

4 plt.title("Pok\’emon Strength Across Generations")

5 plt.xlabel("Generation"); plt.ylabel("Total Stats")

6 plt.tight_layout(); plt.show()

7

8 print(pk.groupby("generation")["total"]

9 .agg(avg_total="mean", median_total="median")

10 .reset_index())

8

