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Notation. N = {1, 2, 3, . . . } are the natural numbers, Q the rationals, and R the reals. To
say two sets can be put in “one-to-one correspondence” means we can pair each element of one
set with exactly one element of the other, with nothing left over on either side.

The rational numbers Q can be put in one-to-one correspondence
with N
Theorem 1. The rationals Q are countable: they can be listed in order so that each rational
appears exactly once.

Proof. Imagine a grid of fractions:
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1
3 · · ·
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1
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3 · · ·
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1
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3 · · ·

... ... ... . . .

We walk through the grid diagonally: first 1
1 , then 1

2 , 2
1 , then 3

1 , 2
2 , 1

3 , and so on. Each positive
rational number appears somewhere in this grid. To avoid repeats, we only keep fractions in
lowest terms (so 2

2 is skipped, since it equals 1 which already appeared).
This gives a list 1

1 , 1
2 , 2

1 , 3
1 , 1

3 , . . . of all positive rationals. By weaving in their negatives and 0,
we get a complete list of all rationals. Thus Q can be put in one-to-one correspondence with
N.

The real numbers R cannot be put in one-to-one correspondence
with N
Theorem 2 (Cantor’s diagonal argument). The real numbers in the interval (0, 1) cannot be
listed in a sequence. Therefore R is uncountable.

Proof. Assume (for contradiction) that we can list all real numbers in (0, 1) as x1, x2, x3, . . . .
Write each number in decimal form:

x1 = 0. a11a12a13 . . .

x2 = 0. a21a22a23 . . .

x3 = 0. a31a32a33 . . .

...

Here aij ∈ {0, 1, 2, . . . , 9} is the j-th digit of xi after the decimal point. (If a number has two
decimal expansions, like 0.4999 . . . = 0.5, pick the one that does not end with repeating 9s.)
For clarity, picture the digits in a grid; row i holds the digits of xi:

1 2 3 · · ·
x1 a11 a12 a13 · · ·
x2 a21 a22 a23 · · ·
x3 a31 a32 a33 · · ·
... ... ... ... . . .
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Now build a new number y by changing the digits along the diagonal of this grid. Define the
j-th digit of y by

bj =
1, if ajj ̸= 1,

2, if ajj = 1.

Let y = 0. b1b2b3 . . .. Then y differs from x1 in the first digit, from x2 in the second digit, from
x3 in the third digit, and so on. Therefore y is not equal to any number in the list
x1, x2, x3, . . . .
But we supposedly started with a complete list of all numbers in (0, 1). Since y is a real
number in (0, 1) and is missing from the list, no such complete list can exist. Hence (0, 1)—and
so R—cannot be put in one-to-one correspondence with N.

Unions of countable and uncountable sets
Theorem 3. The union of two countable sets is countable.

Proof. Let A and B be countable sets. Then we can list their elements as

A = {a1, a2, a3, . . . }, B = {b1, b2, b3, . . . }.

To form a list of A ∪ B, we interleave the two lists:

a1, b1, a2, b2, a3, b3, . . .

This process gives a sequence containing all elements of A ∪ B (with possible repetitions, which
can simply be skipped when they occur). Thus A ∪ B can be put in one-to-one correspondence
with a subset of N, and hence is countable.

Theorem 4. The union of a countable set and an uncountable set is uncountable.

Proof. Let A be countable and B uncountable. Suppose for contradiction that A ∪ B is
countable. Then both A and B would be subsets of a countable set, hence countable
themselves. But this contradicts the assumption that B is uncountable. Therefore A ∪ B must
be uncountable.

The irrationals are “larger” than the rationals
Theorem 5. The set of irrational numbers is uncountable, and therefore strictly larger in size
than the rationals.

Proof. We know R is uncountable, and Q is countable. If the irrationals (which are R \ Q)
were also countable, then R would be a union of two countable sets, hence countable. This
contradicts Cantor’s diagonal argument. Therefore the irrationals are uncountable, while the
rationals are countable.

Remark. In plain words: there are “more” irrational numbers than rational numbers. Even
though there are infinitely many rationals, they can be listed one-by-one. The irrationals
cannot.
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Vocabulary. In set theory, the symbol ℵ0 (aleph-null) is used to denote the size of any
countable infinity. For example, |N| = |Z| = |Q| = ℵ0. A set is called countable if it has size ℵ0,
meaning its elements can be listed one-by-one. The real numbers R, and the irrationals R \ Q,
are uncountable: they have size strictly larger than ℵ0. The cardinality of the continuum (all
real numbers) is usually written c = 2ℵ0 . Thus:

• One-to-one correspondence ↔ same size.

• Countable ↔ size = ℵ0 (listable).

• Uncountable ↔ size > ℵ0.

• |Q| = ℵ0, but |R| = |irrationals| = c > ℵ0.
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