Extra Practice: Prime Factors, Applications, Rational/Irrational, Number Systems & Radicals

Math $10 \cdot Mr$. Merrick

factors.

a) 252

b) 378

c) 2025

d) 2926

ization of:

torization of:

8. Explain why the numbers 0 and 1 have no prime

9. Use a division table to determine the prime fac-

10. Use a factor tree to determine the prime factor-

Prime Factors

a) 84

b) 75

c) 96

d) 105

a) 96

b) 131

c) 225

1. State all positive divisors of the following.

2. In each case, determine the *number* of factors

of the given whole number.

	d) 256		a) 784
	e) 374		b) 960
3.	From the list in Question 2, state which num-		c) 4725
	bers are prime and which are composite.		d) 8400
4.	Classify each whole number as prime or composite. (a) 47 (b) 91 (c) 101 (d) 143 (e) 221 (f) 2		In each case, write the number as a product of prime factors.
		101	a) 3315b) 8085
5.	Twin primes are consecutive odd primes		c) 9990
	(e.g. 5,7). List seven other twin-prime pairs < 120.		d) 7980
6.	a) State the factors of 48.	12.	Which of the following numbers is not a prime factor of 2079?
	b) State the <i>prime</i> factors of 48.c) Express 72 as a product of prime factors.	13.	A. 3 B. 7 C. 11 D. 13 How many numbers in the list 2, 3, 9, 13 are <i>not</i> prime factors of 2592?
7.	State the <i>prime factors</i> of:	14.	The sum of all <i>distinct</i> prime factors of 462 462
	a) 18		is
	b) 40	15.	There is only one set of prime triplets (three
	c) 63		consecutive odd primes). If the triplets are
	d) 90		a, b, c, find abc.
		16.	The number 375 can be expressed as $p \times q^r$ in primes. Find $p+q+r$.

Applications of Prime Factors

- 1. State the greatest common factor (GCF) of:
 - a) 18 and 27
 - b) 32 and 56
 - c) 36, 48, 90
- 2. Use prime factorization to determine the GCF of:
 - a) 180 and 420
 - b) 294 and 385
 - c) 252 and 756
- 3. Use prime factorization to determine the GCF of each pair.
 - a) 528 and 780
 - b) 616 and 840
 - c) 1870 and 2210
 - d) 714 and 1050
 - e) 128 and 320
 - f) 735 and 980
- 4. Determine the GCF of:
 - a) 84, 420, 1008
 - b) 128, 984, 1496, 3080
- 5. State the lowest common multiple (LCM) of:
 - a) 8 and 12
 - b) 7 and 9
 - c) 12 and 20
 - d) 15 and 18
- 6. Use prime factorization to determine the LCM of:
 - a) 18 and 24
 - b) 45 and 84
 - c) 96 and 144
 - d) 55 and 143
 - e) 72 and 252

- 7. Determine the LCM of:
 - a) 8, 12, 18
 - b) 6, 14, 35
 - c) 9, 10, 25
 - d) 12, 30, 105
- 8. In each case, decide whether the number is a perfect square (give the root if so).
 - a) 9801
 - b) 7776
 - c) 4900
 - d) 1089
- 9. Consider 103823.
 - a) Evaluate $\sqrt[3]{103823}$.
 - b) Explain why 103823 is a perfect cube.
- 10. Use prime factorization to test for perfect cubes (give the cube root if so).
 - a) 2744
 - b) 110592
 - c) 35937
 - d) 421875
- 11. Explain how to tell if a number is both a perfect square and cube.
- 12. The greatest common factor of 425 and 595 is **A.** 5 **B.** 7 **C.** 17 **D.** 85
- 13. Two whole numbers x, y have gcd(x, y) = 14. Which statement must be false?

A. x, y both even **B.** xy divisible by 98 **C.** x, y both multiples of 7 **D.** Neither x nor y can be prime

- 14. The LCM of 36, 231, 275 is
- 15. An encyclopedia has 840 pages. Page 12 and every 12th page is green; page 21 and every 21st is orange. How many pages are both?

Rational and Irrational Numbers

- 1. For each, state repeating/non-repeating and terminating/non-terminating.
 - a) $\frac{7}{20}$
 - b) 0.742742742...
 - c) $\frac{19}{22}$
 - d) $\sqrt{\frac{196}{400}}$
 - e) $-\sqrt{31}$
 - f) $\sqrt{0.36}$
 - g) $-4\frac{5}{11}$
 - h) π
- 2. True/False.
 - a) Every terminating decimal is rational.
 - b) A repeating decimal cannot be written as a fraction.
 - c) Only terminating decimals are rational.
 - d) Every rational decimal is either terminating or repeating.
 - e) A decimal cannot be both repeating and non-repeating.
 - f) π is irrational.
- $3.\ \,$ Rational or irrational? Briefly justify.
 - a) $-\frac{17}{8}$
 - b) 0.605
 - c) $\sqrt{196}$
 - d) 0.305305305...
- 4. Order on a number line: $\sqrt{14}$, $\sqrt{\pi}$, $\sqrt{0.2}$, $\sqrt{98}$, $2\sqrt{11}$, $3\sqrt{5}$.

- 5. Identify as rational or irrational; if rational, simplest fraction.
 - a) 0.92
 - b) $\sqrt{\frac{9}{121}}$
 - c) $\sqrt{0.0121}$
 - d) $-\sqrt{97}$
 - e) $-0.\overline{8}$
 - f) $-\sqrt{\frac{49}{81}}$
 - g) 4.612612...
 - h) $\sqrt{\frac{361}{529}}$
 - i) $5.\overline{0}$
- 6. Convert to improper fraction (simplest form).
 - a) $0.\overline{7}$
 - b) $0.1\overline{6}$
 - c) $1.2\overline{3}$
 - d) $0.\overline{204}$
 - e) $-2.45\overline{45}$
- Convert the repeating decimal to a fraction (algebraic method).
 - a) $0.\overline{3}$
 - b) $0.7\overline{2}$
 - c) $0.009\overline{81}$
- 8. Convert each terminating decimal to an improper fraction (lowest terms).
 - a) 3.007
 - b) -2.125
 - c) 4.0625
- 9. The decimal for $\frac{7}{12}$ is
 - **A.** terminating & repeating
 - $\mathbf{B.}$ terminating & non-repeating
 - C. non-terminating & repeating
 - **D.** non-terminating & non-repeating
- 10. Which is irrational?
 - **A.** $\sqrt{256}$ **B.** $\sqrt{0.09}$ **C.** $\frac{25}{6}$ **D.** $\sqrt{50}$
- 11. $9.\overline{9}$ is equal to
 - **A.** $\frac{99}{10}$ **B.** $\frac{999}{100}$ **C.** 10 **D.** 9
- 12. Write $0.\overline{27} = \frac{a}{b}$ in lowest terms and compute b-a.

Number Systems

- 1. Place each into the appropriate nested sets $(N \subset W \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \text{ and } \mathbb{R} \setminus \mathbb{Q})$: $-3, \sqrt{81}, \frac{29}{11}, \sqrt{2}, 0, \pi$.
- 2. List all sets (largest \rightarrow smallest) each belongs to.
 - a) -8
 - b) $\sqrt{64}$
 - c) 3.2727...
 - d) $-\frac{12}{7}$
 - e) 0
 - f) $\sqrt{11}$
 - g) non-repeating -2.1345218...
 - h) π
- 3. Why does -7 belong to more sets than $-\frac{7}{2}$?
- 4. Indicate membership in $\mathbb{N}, \mathbb{W}, \mathbb{Z}, \mathbb{Q}, \overline{\mathbb{Q}}$ (irrationals), and \mathbb{R} for each.
 - a) $\frac{1}{5}$
 - b) 123 987
 - c) -4
 - d) 7.534
 - e) 9.5
 - f) $\sqrt{75}$
 - g) $-\pi$
 - h) $-\frac{355}{113}$
 - i) $-\sqrt{49}$
 - j) 0.000005
 - k) non-repeating 2.232425...
- 5. Find a number that satisfies each condition.
 - a) Integer but not whole.
 - b) Rational but not integer.
 - c) Real but not rational.
 - d) Whole but not natural.

- 6. Fill with always/sometimes/never.
 - a) A whole number is _____ a natural number.
 - b) The quotient of two integers is _____ an integer.
 - c) A whole number is _____ a rational number.
 - d) The difference between two integers is _____ an integer.
 - e) The square root of a number is _____ irrational.
 - f) A negative number is $\underline{\hspace{1cm}}$ in W.
 - g) A number in N is _____ in \mathbb{R} .
- 7. True/False.
 - a) All natural numbers are integers.
 - b) Real numbers consist of rationals and irrationals.
 - c) Integers are nested within rationals.
 - d) All integers are rational.
 - e) All irrationals are real.
 - f) \mathbb{R} is contained in N.
 - g) \mathbb{Q} is contained in W.
 - h) Exactly one element of W is not in N.
- 8. More about roots (True/False).
 - a) Every positive number has two square roots but one cube root.
 - b) Every negative number has one real cube root but no real square roots.
- 9. Short explanations (estimation).
 - a) $\sqrt{8} + \sqrt{17} \neq \sqrt{25}$
 - b) $\sqrt{2} + \sqrt{3} + \sqrt{4} \neq \sqrt{9}$
- 10. Determine true or false.
 - a) $\sqrt{9} + \sqrt{4} = \sqrt{9+4}$.
 - b) $\sqrt{9} \sqrt{4} = \sqrt{9 4}$.
 - c) $\sqrt{9} \cdot \sqrt{4} = \sqrt{36}$.
 - d) $\sqrt{9} + \sqrt{4} = \sqrt{9} + 4$.

- 11. For each, (i) estimate mentally; (ii) use a calculator (nearest tenth) and judge the estimate.
 - a) $\sqrt{21}$
 - b) $\sqrt{27.4}$
 - c) $4\sqrt{48} 3\sqrt{63}$
 - d) $\frac{3}{4}\sqrt{14.2} + \frac{1}{2}\sqrt{5}$
 - e) $\sqrt{123}$
 - f) $\sqrt{\sqrt{90}}$
 - g) $\sqrt{10} + \sqrt{24.5}$
 - h) $\sqrt{\sqrt{2601}}$
- 12. Estimate to one significant digit.
 - a) $\sqrt{507.1}$
 - b) $\sqrt{7991}$
 - c) $\sqrt{10389}$
 - d) $\sqrt{823775}$
 - e) $\sqrt{0.501}$
 - f) $\sqrt{0.0501}$
 - g) $\sqrt{0.0876}$
 - h) $\sqrt{0.0003972}$
- 13. (i) estimate; (ii) calculator (nearest tenth).
 - a) $\sqrt[3]{25}$
 - b) $\sqrt[3]{2}$
 - c) $\sqrt[3]{202}$
 - d) $\sqrt[3]{999.9}$
 - e) $2\sqrt[3]{58.7} 3\sqrt[3]{7.62}$
 - f) $\frac{2}{3}\sqrt{40} \frac{1}{2}\sqrt{60}$
 - g) $\sqrt[3]{3\sqrt{10}}$

- 14. Order on the number line: $\sqrt{50}$, $\sqrt[3]{50}$, $5\sqrt{10}$, $\sqrt[3]{10^3}$, $10\sqrt{5}$, $10\sqrt[3]{5}$.
- 15. Which nesting statement is false?
 - **A.** Integers \subset rationals
 - **B.** Naturals \subset wholes
 - **C.** Irrationals \subset reals
 - **D.** Reals \subset naturals
- 16. How many of $-\sqrt{6}$, $\sqrt[3]{-6}$, $-\sqrt[3]{6}$, $\sqrt{-6}$ are not real?
- 17. How many of $\sqrt{49}$, $\sqrt{49/100}$, $\sqrt{0.49}$, $\sqrt{\frac{4}{9}}$ can be written as $\frac{a}{b}$ with $a, b \in \mathbb{N}$?
- 18. To the nearest hundredth, evaluate $5\sqrt[3]{7}$.
- 19. Evaluate the absolute values.
 - a) |-4|
 - b) |13|
 - c) |3-9|
 - d) ||3| |9||
 - e) $\left| -\sqrt[3]{27} \right|$
 - f) $|\sqrt[3]{-27}|$
- 20. Decide whether the statement is true or false.
 - a) |x| = x if x > 0.
 - b) |x| = -x if x < 0.
- 21. Sketch solution sets on a number line.
 - a) |x| < 5
 - b) $|a| \ge 3$

Radicals

- 1. Mentally evaluate where possible (real numbers).
 - a) $\sqrt{81}$
 - b) $\sqrt[4]{81}$
 - c) $5\sqrt[3]{27}$
 - d) $\sqrt[5]{100000}$
 - e) $\sqrt{\frac{16}{25}}$
 - $f) \sqrt[4]{\frac{1}{16}}$
 - g) $4\sqrt[4]{\frac{1}{16}}$
 - h) $-\sqrt{1}$
 - i) $\sqrt{-1}$
 - j) $\sqrt[5]{-1}$
 - k) $7\sqrt[3]{-125}$
 - 1) $-\sqrt[4]{\frac{1}{16}}$
 - m) $3\sqrt{144}$
 - n) $\frac{5}{2}\sqrt[5]{32}$
 - o) $-\sqrt[11]{-1}$
 - p) $\sqrt[3]{\frac{8}{27}}$
- 2. True/False.
 - a) The square roots of 25 are ± 5 .
 - b) $\sqrt{25} = \pm 5$.
 - c) If $x^2 = 25$ and $x \in \mathbb{R}$, then $x = \pm 5$.
- 3. Use a calculator to evaluate (state sign first, then value as needed).
 - a) $\sqrt[4]{4096}$
 - b) $\sqrt[5]{-243}$
 - c) $-\sqrt[4]{2401}$
 - d) $-\sqrt[3]{729}$
 - e) $\sqrt[3]{-729}$
 - f) $-8\sqrt[4]{\frac{1}{256}}$
 - g) $\sqrt[6]{0.015625}$
 - h) $\sqrt[4]{-6561}$
 - i) $\frac{3}{2}\sqrt[4]{\frac{16}{81}}$

- 4. Evaluate to the nearest hundredth.
 - a) $\sqrt[4]{10}$
 - b) $\sqrt[8]{29}$
 - c) $\frac{3}{2}\sqrt[3]{-527}$
- 5. Evaluate to the nearest tenth.
 - a) $\sqrt[5]{-25}$
 - b) $-5\sqrt[4]{169}$
 - c) $\frac{1}{2}\sqrt[3]{-81}$
- 6. Identify the *index* and the *radicand* in each radical.
 - a) $\sqrt[3]{42}$ index: ____ radicand: ____
 - b) $\sqrt[4]{36}$ index: ____ radicand: ____
 - c) $5\sqrt{17}$ index: ____ radicand:
- 7. Explain the meaning of the index 4 in the radical $\sqrt[4]{36}$.
- 8. Determine whether each statement is **true** or **false**
 - a) $\sqrt{30} = \sqrt{5}\sqrt{6}$
 - b) $\sqrt{6-4} = \sqrt{6} \sqrt{4}$
 - $c) \sqrt{3} = \frac{\sqrt{45}}{\sqrt{15}}$
 - d) $\frac{\sqrt{20}}{\sqrt{10}} = \sqrt{10}$
 - e) $\sqrt{2} + \sqrt{2} = \sqrt{4}$
 - f) $\sqrt{2} \times \sqrt{2} = \sqrt{4}$
 - $g) \sqrt{\frac{1}{2} \cdot 30} = \sqrt{15}$
 - h) $\frac{1}{2}\sqrt{30} = \sqrt{15}$

- 9. Write as a single radical in the form \sqrt{x} (simplify x).
 - a) $\sqrt{5}\sqrt{7}$
 - b) $\sqrt{14}\sqrt{2}$
 - c) $\sqrt{3} \cdot \sqrt{8}$
 - d) $\sqrt{6} \cdot \sqrt{11}$
 - $e) \ \frac{\sqrt{20}}{\sqrt{10}}$
 - $f) \ \frac{\sqrt{25}}{\sqrt{5}}$
 - $g) \frac{\sqrt{10}\sqrt{6}}{\sqrt{2}}$
 - $h) \ \frac{\sqrt{81}}{\sqrt{9}}$
- 10. Express each as a product of radicals (split into two square roots).
 - a) $\sqrt{35}$
 - b) $\sqrt{33}$
 - c) $\sqrt{65}$
 - d) $\sqrt{49}$

- 11. Consider the statements:
 - I. The cube root of -27 (over the reals) is ± 3 .
 - II. The fourth roots of 81 (over the reals) are ± 3 .

III.
$$-\sqrt[3]{1000} = \sqrt[3]{-1000}$$
.

IV.
$$-\sqrt[4]{16} = \sqrt[4]{-16}$$
.

Which are true?

- **A.** II and III only
- **B.** I, II, and III only
- C. I, II, III, and IV
- **D.** Some other combination
- 12. In the radical $\sqrt[4]{18}$, the index and radicand are
 - **A.** index 2, radicand $\sqrt{18}$
 - **B.** index 1, radicand 1
 - C. index 18, radicand 1
 - **D.** index 4, radicand 18
- 13. To the nearest hundredth, evaluate $\sqrt{\frac{7}{8}} + 2\sqrt[4]{\frac{7}{8}}$.

Entire Radicals and Mixed Radicals — Part One

1. Without a calculator, arrange in order from greatest to least:

 $3\sqrt{5}$, $5\sqrt{3}$, $\sqrt{15}$, $2\sqrt{8}$, $8\sqrt{2}$.

- 2. Two students find the hypotenuse PQ of a right triangle with legs $\sqrt{34}$ and $\sqrt{38}$. Louis rounds each leg; Asia simplifies radicals first.
 - a) Compute each to the nearest hundredth.
 - b) Which is more accurate?
 - c) Exact mixed radical.
- 3. Convert each to a *mixed radical* (simplest form).
 - a) $\sqrt{96}$
 - b) $\sqrt{242}$
 - c) $\frac{2}{3}\sqrt{180}$
 - d) $\frac{1}{8}\sqrt{320}$
 - e) $\sqrt{245}$
 - f) $4\sqrt{338}$
 - g) $\sqrt{1250}$
 - h) $\sqrt{66}$
 - i) $-\frac{5}{6}\sqrt{304}$
 - j) $\sqrt{980}$
 - k) $4\sqrt{272}$
 - 1) $-3\sqrt{288}$
 - m) $2\sqrt{369}$
 - n) $\sqrt{364}$
 - o) $\frac{2}{5}\sqrt{450}$
 - p) $\frac{7}{11}\sqrt{341}$
- 4. Convert to a *mixed radical* where the radicand is a whole number.
 - a) $\sqrt{\frac{2}{9}}$
 - b) $\sqrt{\frac{5}{4}}$
 - c) $\sqrt{\frac{18}{25}}$
 - d) $7\sqrt{\frac{20}{49}}$
- 5. Convert to entire radical form.
 - a) $2\sqrt{6}$
 - b) $3\sqrt{7}$

- c) $5\sqrt{15}$
- d) $12\sqrt{2}$
- e) $3\sqrt{25}$
- f) $-8\sqrt{3}$
- g) $9\sqrt{10}$
- h) $-4\sqrt{5}$
- 6. Convert the following to entire radical form.
 - a) $\frac{1}{3}\sqrt{27}$
 - b) 15
 - c) $\frac{3}{2}\sqrt{8}$
 - d) $3^2\sqrt{21}$
- 7. Given $\sqrt{6} \approx 2.45$ and $\sqrt{60} \approx 7.75$, approximate:
 - a) $\sqrt{600}$
 - b) $\sqrt{6000}$
 - c) $\sqrt{600000}$
 - d) $\sqrt{0.06}$
 - e) $\sqrt{0.6}$
 - f) $\sqrt{24}$
 - g) $\sqrt{540}$
 - h) $\sqrt{\frac{6}{25}}$
- 8. Arrange from greatest to least:

 $3\sqrt{7}$, $5\sqrt{3}$, $\sqrt{60}$, $2\sqrt{11}$, $\frac{1}{2}\sqrt{200}$.

- 9. In right $\triangle XYZ$ with legs 19 cm and 5 cm, find hypotenuse XY:
 - a) entire radical
 - b) mixed radical
 - c) decimal (nearest hundredth)
- 10. Find the missing side in simplest mixed radical form.
 - a) legs 4, 8; hypotenuse x
 - b) legs 5, 6; hypotenuse x
 - c) hypotenuse 8, leg 6; other leg x
- 11. The length of \overline{KL} for legs $\sqrt{6}$ and $\sqrt{24}$ is $\mathbf{A. }\sqrt{540}$ $\mathbf{B. }3\sqrt{2}$ $\mathbf{C. }\sqrt{30}$ $\mathbf{D. }9\sqrt{2}$
- 12. Without a calculator, which radical is *not* equal
 - to the others? **A.** $12\sqrt{2}$ **B.** $\sqrt{288}$ **C.** $6\sqrt{8}$ **D.** $4\sqrt{72}$

- 13. On a clear day, $d=\sqrt{13h}$ (km), where h metres is eye level above ground. From a 698.2 m building with eye level 1.8 m above the roof, write $d=a\sqrt{b}$ and find a+b.
- 14. Using Heron's formula, a triangle with sides
- 14, 15, 25 has area $A = p\sqrt{26}$. Find p.
- 15. A square of side 8 cm is inscribed in a larger square by joining midpoints. If larger side is $p\sqrt{q}$, find pq.

Entire Radicals and Mixed Radicals — Part Two

- 1. Convert the following radicals to mixed radicals in simplest form.
 - a) $\sqrt[3]{48}$
 - b) $\sqrt[3]{128}$
 - c) $\sqrt[3]{2000}$
 - d) $5\sqrt[3]{-81}$
 - e) $\frac{5}{6}\sqrt[3]{108}$
 - f) $5\sqrt[4]{162}$
 - g) $5\sqrt{192}$
 - h) $-2\sqrt[3]{625}$
- 2. Convert the following mixed radicals to entire radicals.
 - a) $2\sqrt[5]{2}$
 - b) $3\sqrt[3]{4}$
 - c) $-3\sqrt[4]{3}$
 - d) $-10\sqrt[3]{5}$
 - e) $2\sqrt[5]{6}$
 - f) $\frac{1}{2}\sqrt[3]{16}$
 - g) $\frac{3}{10}\sqrt[4]{100000}$
 - h) $-5\sqrt[3]{9}$
- 3. Arrange, least to greatest (no calculator): $7\sqrt[6]{1}$, $-3\sqrt[3]{-27}$, $\frac{5}{2}\sqrt[4]{16}$, $3\sqrt[3]{64}$.
- 4. Consider $2\sqrt[3]{11}$, $3\sqrt[3]{3}$, $4\sqrt[3]{2}$, $2\sqrt[3]{6}$.
 - a) Explain how to compare without a calculator.
 - b) Order least to greatest.
- 5. $\sqrt[3]{240}$ is equivalent to

A. $2\sqrt[3]{40}$ **B.** $4\sqrt[3]{15}$ **C.** $2\sqrt[3]{30}$ **D.** $8\sqrt[3]{30}$

- 6. Consider the statements:
 - 1) $-3\sqrt[4]{8} = 3\sqrt[4]{-8}$,
 - 2) $-2\sqrt[3]{7} = 2\sqrt[3]{-7}$.
 - A. Both true B. Both false C. 1 true, 2 falseD. 1 false, 2 true
- 7. The mixed radical $\frac{1}{12}\sqrt[3]{128}$ equals $a\sqrt[3]{b}$ in simplest form. Find a+b (nearest tenth).
- 8. $\sqrt{3x} \cdot \sqrt{2x}$ is equivalent to

A. $\sqrt{6x}$ **B.** $\sqrt{36x^2}$ **C.** $6\sqrt{x}$ **D.** $x\sqrt{6}$

- 9. Express as an entire radical.
 - a) $6\sqrt{y}$
 - b) $8\sqrt{c^2}$
 - c) $10\sqrt{2yz^3}$
 - d) $-3\sqrt[3]{x^2}$
 - e) $c\sqrt{c}$
 - f) $x\sqrt{3y^3}$
 - g) $11c^2\sqrt{c^2d}$
 - h) $5a^3b\sqrt{3a^2b}$
- 10. Express as a mixed radical in simplest form.
 - a) $\sqrt{a^5}$
 - b) $\sqrt{t^3}$
 - c) $\sqrt{x^{11}}$
 - d) $\sqrt[3]{x^4}$
 - e) $\sqrt[3]{b^8}$
 - f) $\sqrt[4]{x^6}$
- 11. Express as a mixed radical.
 - a) $\sqrt{8y^2}$
 - b) $\sqrt{16p^3}$
 - c) $\sqrt{75y^3z^4}$
 - d) $\sqrt{300a^9w^7}$
 - e) $5\sqrt{28c^4d^3}$
 - f) $-6\sqrt{29a^4b^8}$

Quick Check

- 1. Which is not a prime factor of $14\,014$?
 - **A.** 7 **B.** 11 **C.** 13 **D.** 17
- 2. How many numbers in the list 7, 11, 17, 21 are prime factors of 3234?
 - **A.** 1 **B.** 2 **C.** 3 **D.** 4
- 3. The sum of prime factors of 160797 is _____.
- 4. The GCF of 6699 and 8265 is _____.
- 5. LCM of 14 and 105 equals GCF of P, Q. Which must be false?
 - **A.** P multiple of 7
 - $\mathbf{B.}\ Q$ multiple of 21
 - **C.** P < 200
 - **D.** Q > 2000
- 6. If x is a perfect square, minimum value of d (in the given factor tree) is
 - **A.** 2 **B.** 3 **C.** 6 **D.** 9
- 7. If x is a perfect cube, the minimum value of x is
- $8. \otimes is irrational.$ Its decimal representation is
 - A. terminating & repeating
 - **B.** terminating & non-repeating
 - C. non-terminating & repeating
 - **D.** non-terminating & non-repeating
- 9. Which are rational? (I) 1.0100100001... (non-repeating), (II) $\sqrt[3]{\frac{8}{27}}$, (III) 0.04, (IV) 0.29
 - A. III, IV
 - B. II, III, IV
 - C. I, II, III, IV
 - **D.** Other

- 10. The rational number $1.\overline{54}$ as $\frac{c}{d}$; the value of c is **A.** 17 **B.** 11 **C.** 6 **D.** 4
- 11. M, N irrationals with 30 < M < 40, 3 < N < 4. The value of $\sqrt{M} + \sqrt{N}$ is best represented by **A.** P **B.** Q **C.** R **D.** S
- 12. Largest among $\sqrt[3]{67}$, $\sqrt[4]{98}$, $\sqrt{19}$, $\sqrt[5]{201}$ is **A.** $\sqrt{19}$ **B.** $\sqrt[4]{98}$ **C.** $\sqrt[3]{67}$ **D.** $\sqrt[5]{201}$
- 13. The length $12\sqrt[4]{4000}$ m has index and radicand **A.** 4 and 4000
 - **B.** 12 and 4000
 - **C.** 4 and 12
 - **D.** 4000 and 4
- 14. When $7\sqrt[3]{6}$ is written as an entire radical, the radicand is _____.
- 15. Three students rewrote $\sqrt{4050}$. Who is correct?
 - **A.** I only
 - **B.** II and III
 - C. All three
 - **D.** Other
- 16. Circle area: if area 120π cm², radius is **A.** 60 **B.** $12\sqrt{10}$ **C.** $2\sqrt{30}$ **D.** $2\sqrt{15}$
- 17. A cube with volume 720 mm³ has edge length $a\sqrt[3]{b}$ mm. Find a+b.
- 18. Consider $4\sqrt[3]{3}$, $5\sqrt{x}$, $16\sqrt{y}$. Which is correct?
 - **A.** x < y < z
 - **B.** z < x < y
 - **C.** y < z < x
 - **D.** z < y < x