RELATIONS AND FUNCTIONS

BOOKLET 1: SETS, SUBSETS, CARTESIAN PRODUCTS, AND RELATIONS

 $Mr.\ Merrick\cdot December\ 8,\ 2025$

Contents

Intro to Sets, Subsets, and Basic Notation	2
Set-Builder Notation, Empty Set, and Power Sets	4
Set-Builder Notation vs. Roster Notation	6
The Empty Set and Vacuous Truth	g
Cartesian Products and Grids	10
Relations as Subsets of Cartesian Products	12

INTRO TO SETS, SUBSETS, AND BASIC NOTATION

Mr. Merrick · December 8, 2025

Explainer

Goal. Build a foundation for all later work on relations and functions by learning the language of sets.

Key ideas.

- A set is a collection of distinct objects (elements).
- In **roster notation**, list elements explicitly:

$$A = \{1, 2, 3\}.$$

- Sets ignore duplicates and ignore order.
- $x \in A$ means x is an element of A.
- A subset $A \subseteq B$ means every element of A is in B.
- A proper subset $A \subset B$ means $A \subseteq B$ but $A \neq B$.

Worked example. Is $\{1, 2, 2, 3\} = \{3, 2, 1\}$? Yes — order and duplicates do not matter.

1. Identifying sets

- (a) Which of the following represent valid sets? (i) $\{1,2,3\}$ (ii) $\{a,b,c,b\}$ (iii) $\{1,2,3\}$ (iv) $\{cat,dog,7\}$
- (b) List all elements of

$$A = \{3, 1, 4, 1, 5, 9, 2, 6\}.$$

2. Membership and subsets

- (c) Let $A = \{1, 3, 5, 7\}$. Determine whether:
 - i. $5 \in A$
 - ii. $2 \in A$
 - iii. $\{3,7\}\subseteq A$
 - iv. $\{1,2\} \subseteq A$
- (d) Compare $B=\{x,y,z\}$ and $C=\{z,x\}$. Determine which are true:
 - i. $C \subseteq B$

- ii. $B \subseteq C$
- iii. $C \subset B$
- iv. B = C

3. Unusual elements of sets

(e) Let

$$X = \{\emptyset, 1, \{1\}\}.$$

Identify each element and answer: Is $\emptyset \in X$? Is $\emptyset \subseteq X$?

(f) Compare

$$A = \{1, 2, \{3\}\}, \qquad B = \{1, 2, 3\}.$$

Are they equal?

4. Quick constructions

- (g) Create a set with 5 elements: an integer, a decimal, a letter, a word, and a set.
- (h) Let

$$A=\{n\in\mathbb{Z}:-2\leq n\leq 3\}.$$

Convert to roster notation.

5. Subset counting

(i) How many subsets does $A = \{1, 2, 3, 4\}$ have?

6. Extra practice: sets and subsets

- (j) Decide whether the following pairs of sets are equal. If not, explain why. (i) $\{1,2,3\}$ and $\{3,2,1,1\}$ (ii) $\{a,\{b\}\}$ and $\{a,b\}$ (iii) $\{\emptyset\}$ and \emptyset
- (k) Let $U = \{1, 2, 3, 4, 5\}$ and $A = \{2, 4\}$. List three different subsets of U that contain A as a subset.
- (l) Write each in roster notation: (i) $\{n \in \mathbb{Z} : 0 \le n \le 5\}$ (ii) $\{n \in \mathbb{Z} : -3 < n < 2\}$
- (m) Describe in set-builder notation the set

$$B = \{-5, -3, -1, 1, 3, 5\}.$$

SET-BUILDER NOTATION, EMPTY SET, AND POWER SETS

Mr. Merrick · December 8, 2025

Explainer

Goal. Move between roster and set-builder notation and understand the empty set more formally. Key ideas.

• Set-builder notation describes elements using a condition:

$$A = \{x \in \mathbb{Z} : x \text{ is odd}\}.$$

- The symbol ":" reads "such that."
- The **empty set** \emptyset has no elements.
- The **power set** $\mathcal{P}(A)$ is the set of all subsets of A.

Worked example. $\{2, 4, 6, 8\} = \{n \in \mathbb{Z} : 2 \le n \le 8, n \text{ even}\}.$

1. Roster \leftrightarrow builder

(a) Convert to builder notation:

$$A = \{1, 3, 5, 7, 9\}.$$

(b) Convert to roster form:

$$B = \{ n \in \mathbb{Z} : -3 \le n \le 2 \}.$$

(c) Fix the domain:

$$C = \{x: x > 0\}.$$

2. Empty set basics

(d) Which describe \emptyset ?

i.
$$\{x \in \mathbb{R} : x^2 = -1\}$$

ii.
$$\{n \in \mathbb{Z} : n \text{ even and odd}\}$$

iii.
$$\{x \in \mathbb{R} : x < 0 \text{ and } x > 10\}$$

(e) Is $\emptyset \subseteq \{\emptyset\}$? Is $\emptyset \in \{\emptyset\}$?

3. Power sets

(f) List all subsets of $A = \{x, y, z\}.$

(g) How many subsets does a set of size n have?

- 4. Why 2^n ?
 - (h) Explain the reasoning behind $|\mathcal{P}(A)| = 2^{|A|}$.

- 5. Extra practice: builder notation and power sets
 - (i) Write the set in roster form:

$$D = \{ n \in \mathbb{Z} : -2 \le n < 3 \}.$$

(j) Write in set-builder notation:

$$E = \{-4, -1, 2, 5, 8\}.$$

- (k) Let $B = \{1, 2\}$. Write $\mathcal{P}(B)$ and then $|\mathcal{P}(B)|$.
- (l) Give a set-builder description of the empty set that looks different from parts (i)–(iii) above.

SET-BUILDER NOTATION VS. ROSTER NOTATION

Mr. Merrick · December 8, 2025

Explainer

Goal. Learn how to write sets in two different ways:

• Roster notation: list all elements explicitly,

$$A = \{1, 3, 5, 7\}.$$

• Set-builder notation: describe elements using a rule,

 $A = \{n \in \mathbb{Z} : n \text{ is an odd integer from 1 to 7}\}.$

Key ideas.

- Roster is good for small, finite sets.
- Set-builder is good when:
 - the set is infinite,
 - the set follows a pattern,
 - the property is easier to describe than enumerate.
- The colon ":" can be read as "such that."
- Set-builder notation uses a membership requirement:

 $\{x \in (\text{universe}) : \text{condition on } x\}.$

Worked example. Convert the set $A = \{2, 4, 6, 8\}$ into set-builder notation:

 $A = \{n \in \mathbb{Z} : n \text{ is even and } 2 \le n \le 8\}.$

1. Converting roster \rightarrow set-builder

(a) Convert the following set to set-builder notation:

$$A = \{1, 3, 5, 7, 9\}.$$

(b) Write the set-builder form of:

$$B = \{-4, -2, 0, 2, 4\}.$$

(c) Convert to set-builder notation:

$$C = \{\text{red}, \text{blue}, \text{green}\}.$$

2. Converting set-builder \rightarrow roster

(d) Convert the set

$$D = \{ n \in \mathbb{Z} : 0 < n < 6 \}$$

into roster notation.

(e) Convert

$$E = \{ x \in \mathbb{R} : x^2 = 4 \}.$$

(f) Convert the following set:

$$F = \{n \in \mathbb{Z} : n \text{ is a multiple of } 3 \text{ and } -10 \le n \le 10\}.$$

3. Identifying mistakes in set-builder notation

(g) Consider the notation

$$G = \{x : x > 0\}.$$

What is missing?

(h) Identify the error in:

$$H = \{ n \in \mathbb{Z} : n = \text{even} \}.$$

(i) Determine whether the following set is well-defined:

$$J = \{x \in \mathbb{R} : x \text{ is a big number}\}.$$

4. Mixed practice

- (j) Write the set of all integers that are multiples of 4 (use builder notation).
- (k) Give the roster notation for the set:

$$K = \{ n \in \mathbb{Z} : n \text{ is prime and } 1 < n < 20 \}.$$

(1) Convert the set into roster form:

$$L = \{x \in \mathbb{R} : x^2 - 9 = 0\}.$$

(m) Convert to set-builder notation:

$$M = \{-5, -3, -1, 1, 3, 5\}.$$

7

5. Extra practice: more conversions

(n) Convert to roster form:

$$S = \{ n \in \mathbb{Z} : -1 \le n \le 4, \ n \text{ even} \}.$$

(o) Convert to set-builder notation:

$$T = \{10, 20, 30, 40, \dots\}.$$

(p) Write a set-builder description of all real numbers between -3 and 5, including endpoints.

THE EMPTY SET AND VACUOUS TRUTH

Mr. Merrick · December 8, 2025

Explainer

Goal. Deepen our understanding of \emptyset and why statements about "all elements of \emptyset " are automatically true.

Key idea: Vacuous truth. A universal statement about the elements of \emptyset is true because there are no counterexamples.

Example. "All unicorns are blue" is (logically) true — there are no unicorns to violate it.

1. Basic truth statements

- (a) Determine whether each is true:
 - i. $\emptyset \in \emptyset$
 - ii. $\emptyset \subseteq \emptyset$
 - iii. $\{\emptyset\} \subseteq \emptyset$
- (b) Is the statement "Every element of \emptyset is prime" true?

2. Builder-notation emptiness

- (c) Which sets are empty?
 - i. $\{x \in \mathbb{R} : x^2 = 4\}$
 - ii. $\{x \in \mathbb{R} : x^2 = 5\}$
 - iii. $\{x \in \mathbb{R} : x^2 = -9\}$

3. Universal statements over empty sets

(d) Explain why

$$(\forall x \in \emptyset) \ x > 1000$$

is true.

(e) Provide an example of a false existential statement involving $\emptyset.$

4. Extra practice: truth with \emptyset

- (f) Decide whether each statement is true or false. Briefly justify. (i) $\forall x \in \emptyset, \ x^2 > 0$ (ii) $\exists x \in \emptyset, \ x = 1$ (iii) $\exists x \in \emptyset, \ x = 1$ is an integer
- (g) Give a real-world "vacuously true" statement (like the unicorn example) and explain why it is vacuously true.

9

CARTESIAN PRODUCTS AND GRIDS

Mr. Merrick · December 8, 2025

Explainer

Goal. Understand ordered pairs and the structure of $A \times B$ as the foundation for defining relations and functions.

Key ideas.

- $A \times B = \{(a, b) : a \in A, b \in B\}.$
- Order matters: $(a, b) \neq (b, a)$ in general.
- $\bullet \ |A\times B| = |A|\cdot |B|.$
- If A or B is empty, $A \times B = \emptyset$.

1. Listing and counting

- (a) Let $A = \{1, 2\}$ and $B = \{x, y, z\}$.
 - i. List $A \times B$.
 - ii. How many elements does $A \times B$ have?

(b) Without listing, compute $|P \times Q|$ if |P| = 5 and |Q| = 7.

2. Empty-set cases

- (c) Compute $A \times \emptyset$.
- (d) Compute $\emptyset \times B$.

3. Grid interpretation

(e) Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Draw or describe $A \times B$ as a table or grid.

4. Product proofs

(f) Prove: If $A \subseteq B$ then $A \times C \subseteq B \times C$.

(g) Provide a counterexample showing the converse need not hold.

(h) Prove:

$$A \times (B \cap C) = (A \times B) \cap (A \times C).$$

5. Extra practice: more products

- (i) Let $A = \{0, 1, 2\}$ and $B = \{p, q\}$. List all elements of $A \times B$ and of $B \times A$. Are they the same set?
- (j) If |A| = 3, |B| = 4, and |C| = 2, compute $|A \times B \times C|$.
- (k) Suppose A has 5 elements. How many elements does $A \times A$ have? What about $A \times A \times A$?

RELATIONS AS SUBSETS OF CARTESIAN PRODUCTS

Mr. Merrick · December 8, 2025

Explainer

Goal. Understand relations as sets of ordered pairs taken from a Cartesian product. This prepares us to define functions as *special* relations.

Key ideas.

• A relation R from A to B is any subset of $A \times B$:

$$R \subseteq A \times B$$
.

• The **domain** of R:

$$dom(R) = \{ a \in A : \exists b, \ (a, b) \in R \}.$$

• The range of R:

$$ran(R) = \{b \in B : \exists a, \ (a, b) \in R\}.$$

• The inverse relation:

$$R^{-1} = \{(b, a) : (a, b) \in R\}.$$

Worked example. If $R = \{(1, a), (3, b)\}$ from $\{1, 2, 3\}$ to $\{a, b\}$ then $dom(R) = \{1, 3\}$ and $ran(R) = \{a, b\}$.

1. Identifying relations

(a) Let $A = \{1, 2\}, B = \{x, y, z\}$ and

$$R = \{(1, y), (2, x)\}.$$

Is $R \subseteq A \times B$?

(b) Let

$$S = \{(x,1),(2,1)\}, \qquad A = \{x,y\}, \quad B = \{1,2,3\}.$$

Is S a relation from A to B?

2. Domain and range

(c) Let

$$R = \{(1, a), (1, b), (2, a), (3, c)\}.$$

Find dom(R) and ran(R).

(d) Let

$$T = \{(m, n) \in \mathbb{Z}^2 : m < n\}.$$

Describe the domain and range.

3. Inverse relations

(e) Let

$$R = \{(1, a), (2, b), (3, b)\}.$$

Compute R^{-1} .

(f) Let

$$D = \{ (m, n) \in \mathbb{Z}^2 : m \mid n \}.$$

Describe D^{-1} in words.

4. Relation proofs

- (g) Prove that R^{-1} is a relation from B to A whenever R is a relation from A to B.
- (h) Prove:

$$dom(R^{-1}) = ran(R), \qquad ran(R^{-1}) = dom(R).$$

(i) Prove that $(R^{-1})^{-1} = R$.

5. Extra practice: working with relations

(j) Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Consider the relation

$$R = \{(1, a), (2, a), (3, b)\}.$$

Find dom(R) and ran(R).

- (k) Let $R = \{(1,2), (2,2), (3,4)\}$ on $A = \{1,2,3,4\}$. Compute R^{-1} and state its domain and range.
- (l) Give an example of a relation on $A = \{1, 2, 3\}$ that has (i) empty domain, (ii) domain $\{1\}$, (iii) domain A.