VECTOR GEOMETRY Mr. Merrick

This short note illustrates three fundamental operations with vectors in \mathbb{R}^2

- 1. vector addition $\mathbf{a} + \mathbf{b}$;
- 2. vector subtraction $\mathbf{a} \mathbf{b}$;
- 3. scalar multiplication $k \mathbf{v}$ (stretching/shrinking and direction).

1. Vector Addition

Rule. Place **b** with its tail at the head of **a**; the sum $\mathbf{a} + \mathbf{b}$ is the arrow from the tail of **a** to the head of **b**. Equivalently, it is the diagonal of the parallelogram formed by **a** and **b**. Addition is commutative.

Notes: $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$. The parallelogram (dashed lines) shows both tip-to-tail paths leading to the same sum.

3. Scalar Multiplication

Rule. For a scalar $k \in \mathbb{R}$ and a vector \mathbf{v} : $||k\mathbf{v}|| = |k| ||\mathbf{v}||$; direction is the same as \mathbf{v} if k > 0, reversed if k < 0; k = 0 gives the zero vector.

Notes: Stretching (|k| > 1) lengthens the arrow; shrinking (0 < |k| < 1) shortens it; a negative k flips its direction.

2. Vector Subtraction

Rule. $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$. Geometrically, you may reverse \mathbf{b} and add it to the head of \mathbf{a} .