AP STATISTICS – UNIT 1 QUICK NOTES

Exploring One-Variable Data

1. Types of Variables

Categorical (Qualitative)

- Nominal no order (e.g., species)
- Ordinal order but not equally spaced

Quantitative (Numerical)

- Discrete vs Continuous
- Ratio scale true zero, ratios meaningful
- Interval scale arbitrary zero, ratios meaningless

2. Graphical Representations

Categorical: frequency table, relative freq., bar chart, pie chart. Quantitative: dotplot, stemplot, histogram, boxplot, CDF plot, density plot.

Histogram vs Bar Chart:

- Histogram quantitative, contiguous bins
- Bar chart categorical, separated bars

3. Describing Distributions – SOCS

- Shape: symmetric, skewed left/right, unimodal, bimodal, uniform
- Outliers: gaps, clusters, extreme values
- Center: median (resistant), mean (non-resistant)
- Spread: range, IQR, SD

Always describe in **context** and reference a visual.

4. Measures of Center & Spread

Center

$$\bar{x} = \frac{1}{n} \sum x_i$$
 (sample mean)
Median = 50th percentile
Mode = most frequent

Spread

$$s^2 = \frac{1}{n-1} \sum (x_i - \bar{x})^2$$
 (sample variance)
 $s = \sqrt{s^2}$ (sample SD)
 $IQR = Q_3 - Q_1$
Range = max - min

Outlier Rules: $x < Q_1 - 1.5 \times IQR$ or $x > Q_3 + 1.5 \times IQR$ |z| > 2 can also indicate unusual values.

5. Comparing Distributions

For each group: use SOCS and explicitly compare shape, center, spread, outliers.

6. Normal Distributions

Empirical Rule

68% within 1σ , 95% within 2σ , 99.7% within 3σ .

Chebyshev's Theorem

At least $1 - \frac{1}{k^2}$ within $k\sigma$ (any shape).

Z-score: $z = \frac{x-\mu}{\sigma}$ (z > 0 above mean, z < 0 below mean)

Percentiles \leftrightarrow **z-scores:** Can solve for μ or σ from known percentiles.

7. Effects of Transformations

- Add c: mean $\rightarrow +c$, spread unchanged
- Multiply by a: mean $\to \times a$, variance $\to \times a^2$, SD $\to \times |a|$
- Scaling changes fences and values proportionally \Rightarrow same # of outliers

8. Special Tools

Normal Probability Plot: roughly straight line \Rightarrow approx.

9. Useful Calculator Commands (TI-84 / TI-Inspire)

Data Entry:

• STAT \rightarrow EDIT – enter data in a list

Summary Statistics:

• STAT o CALC o 1-Var Stats - gives $\bar{x},\,s,\,Q_1,\,Q_3,\,\min,\,\max$

Graphs:

- 2nd Y= (STAT PLOT) turn on plot
- Choose: boxplot (modified shows outliers), histogram, scatterplot

Outlier Detection:

• Use modified boxplot (* marks outliers)

Normal Distribution:

- 2nd VARS (DISTR)
- normalcdf(lower, upper, μ , σ) area under curve
- invNorm(area, μ , σ) percentile \rightarrow value

Z-scores:

• Compute manually: $(x - \mu)/\sigma$ or store in list