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Unit 2 Overview

Representing Relationships in Bivariate Categorical Variables

Statistics for Two Categorical Variables

Representing Relationships Between Bivariate Quantitative Variables

Covariance

Correlation

Linear Regression Models

Residuals

Least Squares Regression

Analyzing Departures from Linearity
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Are redshirts doomed?

Question: In the original series of Star Trek, red-uniformed crew members
were said to have a higher fatality rate during missions. Is there statistical
evidence that redshirts are more likely to die?
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Where Does the Data Come From?

The dataset was compiled by Matthew Barsalou and featured in
Significance Magazine.

It analyzes Star Trek Enterprise NCC-1701 casualties from episodes
aired between September 8, 1966 and June 3, 1969.

Casualty data were based on fan-curated records from Memory
Alpha, a Star Trek wiki.

Full article: Keep Your Redshirt On: A Bayesian Exploration

Crew Member Area Shirt Color Status

Talia Operations, Engineering Red DEAD
Matthew Command and Helm Gold DEAD
Nolan Science and Medical Blue Alive
... ... ... ...

Table: Dataset includes information on all 430 crew members over the time
interval.
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We are interested in exploring the relationship between two categorical
variables:

X : Shirt Colour (Red, Gold, or Blue)

Y : Status (Dead or Alive)

We can tabulate the data in a table:

Alive Dead Total
Blue 129 7 136
Yellow 46 9 55
Red 215 24 239
Total 390 40 430

Table: Contingency table of shirt color vs. crew status aboard the Enterprise

The table shows the marginal and joint distributions.

Using the table we can estimate conditional probabilities.
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Bar Charts
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With bar charts it can be difficult to see relationships between
variables.
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Relative Bar Charts
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How would you detect an association between variables by observing
a relative bar chart?

What would the bar chart look like for variables that are independent?
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Mosaic Plots
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Mosaic Plot of Shirt Color vs. Survival

Why might a mosaic plot be preferred over a relative bar chart?
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Describing Relationships Between Two Numeric Variables

We represent relationships between two numeric variables (sample data)
using scatter plots. To describe a relationship between two quantitative
variables, consider:

Form: Linear, curved, or no pattern

Direction: Positive or negative trend

Strength: Strong if points closely follow a pattern

Strong Positive Linear Weak Negative Linear Nonlinear (Curved)
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Candy, Sugar, and Calories

Graph sugar content vs. calories for the following dataset with your Ti-84
Calculator. Describe the relationship.

Candy Sugar (g) Calories

Skittles 47 250
Peanut M&M’s 15 140
Twizzlers 13 110
Sour Patch Kids 24 110
Milk Duds 16 130
Reese’s Pieces 16 140
Junior Mints 25 130
Swedish Fish 23 110
Starburst 22 160
Mike and Ike 29 150
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Scatterplot: Sugar vs. Calories in Movie Candy
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Candy Scatterplot

Description: There is a moderately strong, positive, and roughly linear
relationship between sugar content and calorie count in movie theatre
candies.
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Outliers and Influential Points in Regression

Outlier: A point that deviates from the overall y -pattern.

High-leverage: A point with an extreme x-value.

Influential: A point that substantially changes the regression line if
removed (often high-leverage and far from the line).

Outlier

High Leverage

Influential

x

y
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Simpson’s Paradox with Two Numeric Variables

Simpson’s Paradox: A trend that appears in several groups of data
reverses when the groups are combined.

Example: Culmen length vs depths for penguins.
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Simpson’s Paradox with Two Numeric Variables
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Species

Adelie Penguin (Pygoscelis adeliae)

Chinstrap penguin (Pygoscelis antarctica)

Gentoo penguin (Pygoscelis papua)
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Simpson’s Paradox with Two Categorical Variables

Simpson’s Paradox: A trend that appears in separate groups reverses
when the data are combined.

Example: Admission by Gender and Department
Department A (Easier)

Admitted Total

Men 80/100 80%
Women 18/20 90%

Department B (Harder)

Admitted Total

Men 20/100 20%
Women 54/180 30%

Combined Totals

Admitted Total

Men 100/200 50%
Women 72/200 36%

Paradox: Women have a higher
acceptance rate in both departments,
but a lower overall acceptance rate
because more women applied to the
more competitive department.
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Understanding Covariance

Covariance measures the direction of a linear relationship between two
quantitative variables.

If positive, large values of x tend to go with large y , and small with
small.

If negative, large values of x go with small y , and vice versa.

If close to zero, there is no linear association.

Formula:

Cov(X ,Y ) =
1

n − 1

∑
(xi − x̄)(yi − ȳ)

1 What does this formula mean geometrically?

2 Why is the value for covariance hard to interpret?
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Geometric Interpretation of Covariance

Covariance as Signed Area: Each point contributes a value (xi − x)(yi − y), interpreted as the
signed area of a rectangle.

x

y

x

y

Key Idea:

Blue rectangles (Quadrants I & III): contribute positively.

Red rectangles (Quadrants II & IV): contribute negatively.

Covariance is the average of these signed areas.
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From Covariance to Correlation

Correlation standardizes covariance:

Covariance

Cov(X ,Y ) =
1

n − 1

∑
(xi − x̄)(yi − ȳ)

Correlation

r =
Cov(X ,Y )

sxsy
=

1

n − 1

∑ (xi − x̄)

sx

(yi − ȳ)

sy

Interpretation of r :

r measures the direction and strength of a linear relationship.

r > 0: positive association; r < 0: negative association.

|r | close to 1: strong linear pattern; close to 0: weak linear pattern.

r has no units and is always between −1 and +1.
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From Covariance to Correlation

Guidelines for describing strength:

Absolute Value of r Interpretation

0.0 ≤ |r | < 0.3 Weak linear relationship
0.3 ≤ |r | < 0.7 Moderate linear relationship
0.7 ≤ |r | ≤ 1.0 Strong linear relationship

Merrick Fanning Unit 2: Exploring Two-Variable Data July 28, 2025 19 / 48



Visualizing Correlation (r) Values

How does the strength and direction of a linear relationship look for
different values of r?

Strong Positive Correlation No Linear Correlation

Try it yourself: Use the online applet to practice estimating correlation:
Guess the Correlation Applet
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Anscombe’s Quartet: Why Graphing Matters

Anscombe’s Quartet consists of four datasets that have:

The same mean and standard deviation for x and y
The same correlation r ≈ 0.816
The same regression line
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Francis John Anscombe (1918-2001)

Born: May 13, 1918, in Hove, East Sussex, England

Education: Trinity College, Cambridge (B.A. 1939, M.A. 1943)

Career Highlights:
Lecturer in mathematics at Cambridge University (1948-1956)
Moved to the United States in 1956; became a professor at Princeton
University
Founding chair of the Department of Statistics at Yale University
(1963-1988)

Notable Contributions:
Developed Anscombe’s Quartet to illustrate the importance of data
visualization
Co-authored foundational work on subjective probability with Robert
Aumann
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Correlation Does Not Imply Causation

Just because two variables are correlated doesn’t mean one causes the other! Is
Global Warming causing the number of Pirates to decline? Are Ice-cream sales
responsible for higher frequency of drowning rates? The rise of the NBA beard
Real (but ridiculous) examples from SpuriousCorrelations.com:

Per capita cheese consumption correlates with deaths by bedsheet
entanglement.

The number of people who drowned in a pool tracks with the number of
Nicolas Cage films released.

Key AP Statistics Message

Correlation does not imply causation. How do we “prove” something is a
causal relationship?

A strong correlation may be due to:

Coincidence
A lurking variable
Or utter nonsense!
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The Simple Linear Regression Model

We model the relationship between two quantitative variables using the equation:

ŷ = a+ bx

This is an estimate of the true relationship y = α+ βx + ϵ where ϵ ∼ Normal(0, σ).

ŷ : predicted value of the response variable

a: y-intercept (predicted average value of y when x = 0)

b: slope (amount on average y changes for each one unit increase in x). Remember rise
over one

x : explanatory variable

y : response variable

Formulas:
b = r ·

sy

sx
and a = ȳ − bx̄

Least squares regression line will always pass through (x , y)
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Visualizing Residuals

Each residual is the vertical distance between the observed value and the
predicted value on the regression line.

i th Residual = êi = y − ŷ

x

y

1 What do positive / negative residuals mean?

2 How do we arrive at our equations using the residuals?

3 Why can’t we simply minimize the sum of residuals?
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Least Squares Regression: Minimizing Squared Residuals

The least squares regression line minimizes the sum of squared residuals:

Minimize
n∑

i=1

ê2i =
n∑

i=1

(yi − ŷ)2 =
n∑

i=1

(yi − (a+ bxi ))
2

x

y Minimization:

∂

∂a

∑
(yi − a− bxi )

2 = 0

∂

∂b

∑
(yi − a− bxi )

2 = 0

Solving these gives the least squares
estimates. Check out Interactive Least

Squares on Desmos
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Exploring Dolbear’s Law

Can crickets be used as thermometers? In 1897, physicist Amos
Dolbear proposed a formula relating cricket chirps to air temperature:

Temperature (◦F) ≈ 40 +
Chirps per minute− 40

4

This works reasonably well for the snowy tree cricket.

Why does this relationship exist? - Crickets are cold-blooded; their
metabolism speeds up with temperature.

The formula is only accurate in a specific range (about 55-100◦F).

Dolbear’s original paper: “The Cricket as a Thermometer,” The American
Naturalist (1897).
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Extrapolation vs. Interpolation

Why am I telling you about cricket chirps?

Interpolation: Predicting within the observed range of data.

Extrapolation: Predicting outside the observed range - risky or misleading.
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Dolbear’s Law: Chirps vs. Temperature
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Departures from Linearity

How do we tell when data doesn’t fit the linear regression model?

1 Residual plots allow us to see hidden patterns in relationship that isn’t
clear in scatter plot.

2 r2 tells us how much of the variation in the response variable is
captured or explained by the model.
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Diagnosing Residual Plots

Residual plots help assess the appropriateness of a linear model.

A good model has no pattern (unbiased)

And constant vertical spread (homoscedastic)

Residual

Unbiased & Homoscedastic

Residual

Biased & Homoscedastic

Residual

Unbiased & Heteroscedastic

Residual

Biased & Heteroscedastic
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The Coefficient of Determination (r 2)

What is r2?

r2 = 1− SSE

SST
=

SSR

SST

Where:

SSE =
∑

(yi − ŷi )
2 - Sum of Squared Errors (Residuals)

SST =
∑

(yi − y)2 - Total Sum of Squares

SSR =
∑

(ŷi − ȳ)2 - Regression Sum of Squares

Interpretation:

r2 measures the proportion of variability in the response variable explained
by the least squares regression model.

If r2 = 0.82, then 82% of the variation in y is explained by its linear
relationship with x .

A higher r2 means a better fit, but it does not prove causation.
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Visual Breakdown of Variability for r 2

For a single point, total variability can be broken into:

(yi − ȳ) = (yi − ŷi ) + (ŷi − ȳ)

ȳ

ŷi

yi

Residual

Explained

Total

x

y

One Observation’s Contribution to SST, SSR, SSE
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Visualizing r 2: SST vs. SSE

Comparing Total vs. Unexplained Variability

x

y

Total Variability SST =
∑

(yi − y)2

x

y

Unexplained Variability SSE =
∑

(yi − ŷi )
2

SSR is the variability that is explained by the model SSR = SST−SSE.

SSR

SST
= 1− SSE

SST
= r2
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Standard Error of the Regression Line

What is the Standard Error of the Regression Line s?

s =

√∑
(yi − ŷi )2

n − 2

s is the standard deviation of the residuals.

It tells us, on average, how far the actual values yi are from the
predicted values ŷi .

In other words: how far off our model tends to be when making
predictions.

It is measured in the same units as the response variable.

It is an estimate of σ for the regression model ϵ ∼ Normal(0, σ).

Interpretation: If s = 2.3, then our model typically over or under predicts
y by about 2.3 units on average.
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Conditions for Linear Regression: LINER

Before using a least-squares regression model, we must check the following
conditions:
L - Linearity
The relationship between the explanatory and response variables should be

linear. Check: Scatterplot and residual plot (look for no curves).

I - Independence
The observations should be independent of each other.
Check: Study design (e.g., random sampling or random assignment).

N - Normality of Residuals
The residuals should be roughly normally distributed.
Check: Histogram or normal probability plot of residuals.

E - Equal Variance (Homoscedasticity)
The spread of residuals should be roughly constant across all values of x .
Check: Residual plot should show consistent vertical spread.

R - Randomness
The data should come from a random process.
Check: Look for mention of random sampling or random assignment.
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Example: Modelling Penguin Body Mass with Linear
Regression

Experimental Data (Adelie Penguins):

Culmen Depth (mm) Mass (g) Culmen Depth (mm) Mass (g)
17.0 3750 19.1 3875
18.1 3800 19.4 4050
18.3 3700 19.5 4000
18.6 3850 19.7 4025
18.7 3850 19.9 4250
18.8 3700 20.1 4400
18.9 3700 20.3 4500
19.0 3950 20.4 4450
19.0 4000 20.6 4550
19.1 3950 20.8 4600

1 Determine the regression equation using culmen depth to predict body mass.

2 Determine and interpret a and b for the regression model.

3 Determine and interpret r2 and s for the regression model.
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Example: Modeling Heart Rate Response to Caffeine

Context: A medical researcher investigates how caffeine affects resting heart rate. A group of
adults is given increasing doses of caffeine, and their heart rate (in bpm) is measured after 30
minutes.

Experimental Data:

Caffeine (mg) Heart Rate (bpm)
0 68
50 72
100 75
150 79
200 83
250 84

1 Determine the regression equation from the experimental data.

2 Determine and interpret a and b for the regression model.

3 Determine and interpret r2 and s for the regression model.
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Example: Modeling Hooke’s Law with Linear Regression

Context: A physics student investigates Hooke’s Law, which says that the force needed to
stretch a spring is proportional to how far it’s stretched:

F = k∆x

where F is the applied force (N), ∆x is the displacement (m), and k is the spring constant.

Experimental Data:

Displacement (m) Force (N)
0.01 0.18
0.02 0.41
0.03 0.60
0.04 0.83
0.05 1.03
0.06 1.21

1 Determine the regression equation from the experimental data.

2 Determine and interpret a and b for the regression model.

3 Determine and interpret r2 and s for the regression model.

Merrick Fanning Unit 2: Exploring Two-Variable Data July 28, 2025 38 / 48



Example: Modeling Hooke’s Law with Linear Regression

Context: A physics student investigates Hooke’s Law, which says that the force needed to
stretch a spring is proportional to how far it’s stretched:

F = k∆x

where F is the applied force (N), ∆x is the displacement (m), and k is the spring constant.

Experimental Data:

Displacement (m) Force (N)
0.01 0.18
0.02 0.41
0.03 0.60
0.04 0.83
0.05 1.03
0.06 1.21

1 Determine the regression equation from the experimental data.

2 Determine and interpret a and b for the regression model.

3 Determine and interpret r2 and s for the regression model.

Merrick Fanning Unit 2: Exploring Two-Variable Data July 28, 2025 38 / 48



Example: Modeling Hooke’s Law with Linear Regression

Context: A physics student investigates Hooke’s Law, which says that the force needed to
stretch a spring is proportional to how far it’s stretched:

F = k∆x

where F is the applied force (N), ∆x is the displacement (m), and k is the spring constant.

Experimental Data:

Displacement (m) Force (N)
0.01 0.18
0.02 0.41
0.03 0.60
0.04 0.83
0.05 1.03
0.06 1.21

1 Determine the regression equation from the experimental data.

2 Determine and interpret a and b for the regression model.

3 Determine and interpret r2 and s for the regression model.

Merrick Fanning Unit 2: Exploring Two-Variable Data July 28, 2025 38 / 48



Example: Modeling Hooke’s Law with Linear Regression

Context: A physics student investigates Hooke’s Law, which says that the force needed to
stretch a spring is proportional to how far it’s stretched:

F = k∆x

where F is the applied force (N), ∆x is the displacement (m), and k is the spring constant.

Experimental Data:

Displacement (m) Force (N)
0.01 0.18
0.02 0.41
0.03 0.60
0.04 0.83
0.05 1.03
0.06 1.21

1 Determine the regression equation from the experimental data.

2 Determine and interpret a and b for the regression model.

3 Determine and interpret r2 and s for the regression model.

Merrick Fanning Unit 2: Exploring Two-Variable Data July 28, 2025 38 / 48



Transformations in Regression Models

Why transform data in regression?

The standard linear model assumes:

A linear relationship between variables
Constant variability (equal spread)
Normally distributed residuals

When these assumptions are violated, a transformation can help:

Make the relationship more linear
Stabilize the spread of residuals
Improve interpretability or predictive accuracy

When might we need a transformation?

The residual plot shows a curved pattern → consider taking log(x),√
x , or 1/x

The spread of residuals increases with x → consider transforming y
with log(y) or

√
y

The relationship is multiplicative or exponential → log-log or semi-log
transformations can help
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Common Transformations in Regression

Transformations help linearize relationships and stabilize variance.

Method Transform Regression Equation Predicted Value

Linear None y = a+ bx ŷ = a+ bx
Exponential Take log(y) log(y) = a+ bx ŷ = 10a+bx

Square Root Take
√
y

√
y = a+ bx ŷ = (a+ bx)2

Note: Use ln and ex if working with natural logarithms instead of common
logs.
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Transformations in Regression: What You Need to Know

You do NOT need to memorize specific transformation formulas for
the AP Exam.

What you do need to know:

Be able to recognize when a transformation might help, based on:

A curved pattern in the residual plot (→ nonlinearity)
A fanning or shrinking spread in residuals (→ changing variability)

Know that transformations are used to:

Make a relationship more linear
Stabilize the variability of the residuals

If given a transformed model like log(y) = a+ bx , you should:

Interpret a, b, and r2 in context
Understand what ŷ means after back-transforming
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Introducing the mtcars Dataset

Dataset: mtcars (Motor Trend Car Road Tests)
Source: 1974 issue of Motor Trend magazine
Description:

Contains data on 32 cars from the 1973-74 model year
Variables include engine specs, fuel consumption, and performance

Key Variables:

mpg: Miles per gallon (fuel efficiency)
hp: Gross horsepower
wt: Weight (1000 lbs)
qsec: 1/4 mile time
cyl: Number of cylinders
am: Transmission (0 = automatic, 1 = manual)

Reference: Henderson, H. V. and Velleman, P. F. (1981). Building
multiple regression models interactively. Biometrics, 37, 391-411.
R Documentation
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Transforming Nonlinear Data: MPG vs. Horsepower

Raw Data (32 Cars):

Car hp mpg Car hp mpg
Mazda RX4 110 21.0 Dodge Challenger 150 15.5
Mazda RX4 Wag 110 21.0 AMC Javelin 150 15.2
Datsun 710 93 22.8 Camaro Z28 245 13.3
Hornet 4 Drive 110 21.4 Pontiac Firebird 175 19.2
Hornet Sportabout 175 18.7 Fiat X1-9 66 27.3
Valiant 105 18.1 Porsche 914-2 91 26.0
Duster 360 245 14.3 Lotus Europa 113 30.4
Merc 240D 62 24.4 Ford Pantera L 264 15.8
Merc 230 95 22.8 Ferrari Dino 175 19.7
Merc 280 123 19.2 Maserati Bora 335 15.0
Merc 280C 123 17.8 Volvo 142E 109 21.4
Merc 450SE 180 16.4 Chrysler Imperial 230 14.7
Merc 450SL 180 17.3 Lincoln Continental 215 10.4
Merc 450SLC 180 15.2 Cadillac Fleetwood 205 10.4
Fiat 128 66 32.4 Toyota Corolla 65 33.9
Honda Civic 52 30.4 Toyota Corona 97 21.5

Observation: The plot of hp vs. mpg is nonlinear and decreasing.
Transformation Idea: Try mpg vs. log(hp) or log(mpg) vs. log(hp)
Which model has the best fit?
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Linear Regression Shows Up in AP Science

Linear regression helps identify patterns, determine constants, and verify
models across the sciences.

AP Biology

Lineweaver-Burk
plot:
1
v vs. 1

[S]

Population growth:
ln(N) vs. t

Photosynthesis rate:
O2 vs. time

AP Chemistry

First-order kinetics:
ln[A] vs. t

Beer’s Law:
A vs. [C ]

Boyle’s Law:
P vs. 1

V

AP Physics

Hooke’s Law:
F vs. x

Ohm’s Law:
V vs. I

Kinematics:
v vs. t

Pendulum period:
T 2 vs. L

Many of these applications require you to linearize non-linear data.
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Integrated Rate Laws as Linear Models

Many chemical reactions can be modeled with linearized equations. Here’s
how different reaction orders relate to linear regression.

Zeroth Order

d [A]

dt
= −k

∫
d [A] = −k

∫
dt

[A] = −kt + [A]0

First Order

d [A]

dt
= −k[A]

∫
1

[A]
d [A] = −k

∫
dt

ln[A] = −kt + ln[A]0

Second Order

d [A]

dt
= −k[A]2

∫
1

[A]2
d [A] = −k

∫
dt

1

[A]
= kt +

1

[A]0

These transformations allow rate laws to be analyzed using linear regression
techniques.
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Reaction 1: Decomposition of Nitrous Oxide (N2O)

Objective: Determine the reaction order and calculate the rate constant using regression.

2N2O (g)
Pt catalyst−−−−−−→ 2N2 (g) + O2 (g)

Time (s) [N2O] (mol/L)
0 0.80
10 0.715
20 0.636
30 0.550
40 0.491
50 0.405
60 0.333
70 0.235
80 0.150
90 0.086

Instructions:

Plot [A], ln[A], and 1/[A] vs. time.

Identify the most linear plot to determine the reaction order.

Use linear regression to find the rate constant k from the slope.
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Reaction 2: Decomposition of Hydrogen Peroxide (H2O2)

2H2O2 (aq)
KI catalyst−−−−−−→ 2H2O (l) + O2 (g)

Time (s) [H2O2] (mol/L)
0 1.00
20 0.815
40 0.665
60 0.531
80 0.441
100 0.352
120 0.285
140 0.230
160 0.185
180 0.145

Instructions:

Plot [A], ln[A], and 1/[A] vs. time.

Identify which plot is linear to determine the reaction order.

Use the slope to calculate k.
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Reaction 3: Iodide and Peroxydisulfate Reaction

2I− (aq) + S2O
2−
8 (aq) → I2 (aq) + 2SO2−

4 (aq)

Time (s) [I-] (mol/L)
0 0.50
10 0.397
20 0.319
30 0.263
40 0.205
50 0.179
60 0.151
70 0.130
80 0.112
90 0.093

Instructions:

Graph all three transformed plots: [A], ln[A], 1/[A] vs. time.

Determine the best fit and use regression to find k.
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