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Unit 4 Outline: Probability

© Basic Set Theory and Counting

@ Conditional probability

© Estimating probability with simulation
@ Discrete Random Variables

@ Continuous Random Variables
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@ A set is a collection of distinct objects, called elements.
o Elements can be numbers, categories, or other types of data.

@ Sets are usually denoted with capital letters like A, B, or S.

Cardinality
The cardinality of a set is the number of elements it contains. For a set
A, it is written as |A|.

Example: How many elements are in M = {my, ma,..., m,}?
There are n elements in M, so |[M| = n.
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The Universal Set and the Empty Set

Universal Set

The universal set contains all possible elements under consideration for a given
context.

@ Denoted by S in probability (stands for sample space).

S

The empty set, denoted by @ or {}, is the set with no elements.

@ It is a subset of every set, including S.

e [f|=0
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Intersection of Sets

Intersection

For two sets A and B, the intersection is the set of elements that are in both A
and B.
It is denoted: ANB

Example: Let A={1,2,3,4,5,6} and B ={1,2,14}
Then:
ANnB={1,2}
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The union of two sets A and B includes all elements that are in A or in B (or in
both).

It is denoted: AUB

Example: Let

A = {Apple, Banana, Orange}, B = {Banana, Orange, Potato}

Then:
AU B = {Apple, Banana, Orange, Potato}

S
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Complement of a Set

Complement

The complement of a set A includes all elements in the universal set S that are
not in A.
It is denoted: A€

Example: Let S ={1,2,3,4,5,6} and A= {2,4,6}
Then:
A€ = {1,3,5)

ACS
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Set Laws: Commutative Laws

Commutative Laws

Order doesn’t matter when taking the union or intersection of sets:

AUB=BUA and ANB=BnNA

Intersection: AN B Union: AUB
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Set Laws: Associative Laws

Associative Laws

The grouping of sets does not affect the result of union or intersection:

(AUB)UC=AU(BUC) (ANB)NC=AN(BNC)

Intersection: (ANB)NC Union: (AUB)UC
S S

o Q
(O v
oo/ o

q q
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DeMorgan’s Laws

For sets A and B, fill in the Euler diagrams to represent:

(AU B)®
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DeMorgan’s Laws

For sets A and B, fill in the Euler diagrams to represent:

(AU B)© (AN B)©

Y
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DeMorgan’s Laws

For sets A and B, fill in the Euler diagrams to represent:

(AU B)© (AN B)¢

Y '

What is the result that follows?
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DeMorgan’s Laws

For sets A and B, fill in the Euler diagrams to represent:

(AU B)© (AN B)¢

Y '

What is the result that follows?

DeMorgan's Laws

—

AU B)® = A°N B°
(AN B)® = A°U B°
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Set Laws: Identity Laws

Identity Laws

AUP=A
ANS=A

AUD ANS
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Set Laws: Complement Laws

Complement Laws

AUA =S
ANAS =10
(A=A
AU A€ AN A€
S S

AS AS
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Set Laws: Distributive Laws

Distributive Laws

AN(BUC)=(ANB)U(ANC)
AU(BNC)=(AuB)N (AU Q)

BUC AN(BUC)
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Example: Draw two sets such that AN B =)
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Disjoint Sets

Example: Draw two sets such that AN B =)

Definition: Disjoint Sets

Two sets A and B are called disjoint if they have no elements in common,
i.e.,
ANB=10
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Partition of a Set

Definition: Partition of a Set

A partition of a set S is a collection of subsets Ej, Es, . .., E, such that:
@ Each £, C S
@ The subsets are disjoint: E; N E; = () for i # j

@ Their union covers all of S: EfUE U---UE, =S

Example: Let S ={2,3,4,5,6,7,8,9,10,11,12,13}
A valid partition into 3 subsets:

E={2}, E={3), E={4,...,13}

Partition of S

E| E

Es
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Probability and Sets

@ Random Experiment: A process that leads to a single but
unpredictable outcome.
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Probability and Sets

@ Random Experiment: A process that leads to a single but
unpredictable outcome.

o Sample Space (S): The set of all possible outcomes of a random
experiment. It plays the role of the universal set in probability.

o Discrete: countable outcomes (e.g., rolling a die)
e Continuous: uncountable outcomes (e.g., measuring height)
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Probability and Sets

@ Random Experiment: A process that leads to a single but
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o Sample Points: The individual outcomes in the sample space.

Merrick Fanning June 23, 2025 16 /84



Probability and Sets

@ Random Experiment: A process that leads to a single but
unpredictable outcome.

Sample Space (S): The set of all possible outcomes of a random
experiment. It plays the role of the universal set in probability.

o Discrete: countable outcomes (e.g., rolling a die)

e Continuous: uncountable outcomes (e.g., measuring height)

Sample Points: The individual outcomes in the sample space.

Simple Events: Events consisting of exactly one sample point.
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Probability and Sets

@ Random Experiment: A process that leads to a single but
unpredictable outcome.

o Sample Space (S): The set of all possible outcomes of a random
experiment. It plays the role of the universal set in probability.

o Discrete: countable outcomes (e.g., rolling a die)
e Continuous: uncountable outcomes (e.g., measuring height)

o Sample Points: The individual outcomes in the sample space.
o Simple Events: Events consisting of exactly one sample point.

@ Compound Events: Events made up of multiple sample points - i.e.,
subsets of S with more than one element.
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Probability and Sets

@ Random Experiment: A process that leads to a single but
unpredictable outcome.

o Sample Space (S): The set of all possible outcomes of a random
experiment. It plays the role of the universal set in probability.

o Discrete: countable outcomes (e.g., rolling a die)
e Continuous: uncountable outcomes (e.g., measuring height)

o Sample Points: The individual outcomes in the sample space.
o Simple Events: Events consisting of exactly one sample point.

@ Compound Events: Events made up of multiple sample points - i.e.,
subsets of S with more than one element.

e Probability (P(X)): A number between 0 and 1 that measures the
likelihood that event X occurs when the experiment is run.
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Probability and Sets

Set notation gives us a convenient way to represent probability in the context of
random experiments:

@ The sample space S is the set of all possible outcomes (the universal set).

@ Simple events are individual outcomes, denoted by e, and are elements of
S.

@ Compound events are subsets of the sample space, denoted by E.

@ Events in probability are treated as sets, so the laws of sets apply to
probability.
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The Axioms of Probability

The Axioms of Probability

Let A be an event in a sample space S:

e Axiom 1:
0<PA<1
The probability of any event is a number between 0 and 1.
e Axiom 2:
P(S)=1
The probability of the entire sample space is 1.

e Axiom 3 (Additivity): If A1, Ay, ..., A, are pairwise mutually
exclusive events, then:

P(ALUAYU---UA,) = P(A1) + P(A2) + - + P(A,)
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Probability for the Intersection of Two Events

Intersection of Events

P(AN B)

This represents the probability that both events A and B occur.
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Probability for the Union of Two Events

Rule for the Union of Two Events

P(AU B) = P(A) + P(B) — P(AN B)

This represents the probability of event A or event B occurring.

P(A) + P(B) P(AU B)

If we add P(A) 4+ P(B), we count P(AN B) twice. Subtracting it once gives the correct union.

P(A) + P(B) = P(AU B) + P(AN B)
= P(AUB) = P(A) + P(B) — P(AN B)

@ When would P(AU B) = P(A) + P(B)?
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Probability for the Union of Two Events

Rule for the Union of Two Events

P(AU B) = P(A) + P(B) — P(AN B)

This represents the probability of event A or event B occurring.

P(A) + P(B) P(AU B)

If we add P(A) 4+ P(B), we count P(AN B) twice. Subtracting it once gives the correct union.

P(A) + P(B) = P(AU B) + P(AN B)
= P(AUB) = P(A) + P(B) — P(AN B)

@ When would P(AU B) = P(A) + P(B)?
@ Give a formula for P(AU B U C)
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Law of Total Probability

Law of Total Probability

P(A) = P(ANB)+ P(AN B°)

To get the total probability for event A, we consider:
Either A occurs with B, or A occurs with B¢
Since these events are disjoint, we can add their probabilities:
P(A) = P(ANB)+ P(AN B°)

P(AN B) P(AN B°)
S S
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Other Laws of Probability

DeMorgan's Laws

P((AUB)) = P(A°N B°) P((An B)) = P(A°U B°)
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Other Laws of Probability

DeMorgan's Laws

P((AUB)) = P(A°N B°) P((An B)) = P(A°U B°)

v

Distributive Laws

P(AN(BUC))=P((ANB)U(AN())
P(AU(BNC))=P((AUB)N(AU())

A\
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Other Laws of Probability

DeMorgan's Laws

P((AUB)S) = P(AN B°)  P((AN B)) = P(A° U B°)

Distributive Laws

Mutually Exclusive Events

Two events A and B are mutually exclusive if:

P(ANB) =0

This means it's impossible for both events to occur at the same time.
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Example: What is the probability of rolling a 27

Question: Two three-sided dice (numbered 1 to 3) are rolled. What is the
probability that a 2 appears on at least one die?

Step 1: What is the sample space?
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Example: What is the probability of rolling a 27

Question: Two three-sided dice (numbered 1 to 3) are rolled. What is the
probability that a 2 appears on at least one die?

Step 1: What is the sample space?
S ={11,12,13,21,22,23,31,32,33} (9 outcomes)

Step 2: Which outcomes include at least one 27
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Example: What is the probability of rolling a 27

Question: Two three-sided dice (numbered 1 to 3) are rolled. What is the
probability that a 2 appears on at least one die?

Step 1: What is the sample space?
S ={11,12,13,21,22,23,31,32,33} (9 outcomes)
Step 2: Which outcomes include at least one 27
E ={12,21,22,23,32}

Step 3: Calculate the probability.
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Example: What is the probability of rolling a 27

Question: Two three-sided dice (numbered 1 to 3) are rolled. What is the
probability that a 2 appears on at least one die?

Step 1: What is the sample space?
S ={11,12,13,21,22,23,31,32,33} (9 outcomes)
Step 2: Which outcomes include at least one 27
E ={12,21,22,23,32}

Step 3: Calculate the probability.

5
P(At least one 2) = 9
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Counting: Multiplicative Rule & Factorials

Multiplicative Rule

If a task can be done in m ways, and a second task in n ways, then the total

number of outcomes is:
mxn

Example: If you choose 1 of 3 shirts and 1 of 2 pants, total outfits = 3 X 2 = 6.
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Counting: Multiplicative Rule & Factorials

Multiplicative Rule

If a task can be done in m ways, and a second task in n ways, then the total

number of outcomes is:
mxn

Example: If you choose 1 of 3 shirts and 1 of 2 pants, total outfits = 3 X 2 = 6.

n=nx(n—-1)x---x1 (by definition: 0! = 1)

Example: 4! =4 x3x2x1=24
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Counting: Permutations & Combinations

Permutations (Order Matters)

n!
(n—r)!

Example: Number of ways to assign 1st, 2nd, 3rd place from 5 people:

P(n,r) =

5!
P(5,3) = 5; = 60
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Counting: Permutations & Combinations

Permutations (Order Matters)

n!
(n—r)!

Example: Number of ways to assign 1st, 2nd, 3rd place from 5 people:

P(n,r) =

5!
P(5,3) = ; =60

Combinations (Order Doesn't Matter)

0= ()= 15w

Example: Number of ways to choose 3 people from 5:

5 5!
(3) =3

v

Merrick Fanning June 23, 2025 25 /84



Counting: Repeated Elements

Permutations with Repeated Elements

When elements repeat, divide to correct for overcounting:

n!
n1! 0 n2!~'nk!

Example: “BALLOON" has 7 letters with repeats: 2 L's, 2 O's

7! 5040
1-11-21-21-11 4

= 1260 arrangements
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Simulating Probabilities In An Experiment

Up to this point, we've focused on theoretical probabilities derived
mathematically.

Theoretical probability predicts what should happen, but it doesn’t tell
us what will happen in one experiment.

We can also use simulation to estimate probabilities by performing
experiments and observing outcomes.

Key Idea

Estimate the probability of an event by simulating the experiment many
times and observing the relative frequency of the event.
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The Process of Simulation

We can summarize the steps for simulating an experiment as
follows:

2]
o
o

State the Problem: Clearly define the random process or
phenomenon you are trying to simulate.

Identify Assumptions: Describe any assumptions you are making
(e.g., independence, fixed probabilities).

Assign Digits: Use random digits (e.g., 00-99) to represent
outcomes based on their probabilities.

Simulate Repetitions: Run many trials of the simulated experiment
using random number tables or technology (e.g., randInt on a
calculator).

Draw Conclusions: Estimate probabilities or answer the question
based on the proportion of trials that meet the event criteria.
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The Process of Simulation

We can summarize the steps for simulating an experiment as
follows:

o
2]
o
o

o

State the Problem: Clearly define the random process or
phenomenon you are trying to simulate.

Identify Assumptions: Describe any assumptions you are making
(e.g., independence, fixed probabilities).

Assign Digits: Use random digits (e.g., 00-99) to represent
outcomes based on their probabilities.

Simulate Repetitions: Run many trials of the simulated experiment
using random number tables or technology (e.g., randInt on a
calculator).

Draw Conclusions: Estimate probabilities or answer the question
based on the proportion of trials that meet the event criteria.

This method is especially useful when theoretical calculations are too
complex or unknown.
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Simulation: How Many Boxes Until 2 Dumbledore Cards?

In Harry Potter and the Philosopher’s Stone, Ron Weasley says: I got about 6 of
him,” referring to Dumbledore cards in chocolate frogs.
Suppose 12% of boxes contain a Dumbledore card. Simulate how many boxes it

takes to get 2 Dumbledore cards.
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Simulation: How Many Boxes Until 2 Dumbledore Cards?

In Harry Potter and the Philosopher’s Stone, Ron Weasley says: I got about 6 of
him,” referring to Dumbledore cards in chocolate frogs.
Suppose 12% of boxes contain a Dumbledore card. Simulate how many boxes it

takes to get 2 Dumbledore cards.

@ Define: Count how many boxes until 2 Dumbledore cards appear.
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Simulation: How Many Boxes Until 2 Dumbledore Cards?

In Harry Potter and the Philosopher’s Stone, Ron Weasley says: I got about 6 of
him,” referring to Dumbledore cards in chocolate frogs.
Suppose 12% of boxes contain a Dumbledore card. Simulate how many boxes it

takes to get 2 Dumbledore cards.

@ Define: Count how many boxes until 2 Dumbledore cards appear.

@ Assumptions: Trials are independent; P(Dumbledore) = 0.12
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Simulation: How Many Boxes Until 2 Dumbledore Cards?

In Harry Potter and the Philosopher’s Stone, Ron Weasley says: I got about 6 of
him,” referring to Dumbledore cards in chocolate frogs.
Suppose 12% of boxes contain a Dumbledore card. Simulate how many boxes it

takes to get 2 Dumbledore cards.
@ Define: Count how many boxes until 2 Dumbledore cards appear.
@ Assumptions: Trials are independent; P(Dumbledore) = 0.12

© Assign Digits:

e 00-11 — Dumbledore (12 numbers)
e 12-99 — Other (88 numbers)
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Simulation: How Many Boxes Until 2 Dumbledore Cards?

In Harry Potter and the Philosopher’s Stone, Ron Weasley says: I got about 6 of
him,” referring to Dumbledore cards in chocolate frogs.

Suppose 12% of boxes contain a Dumbledore card. Simulate how many boxes it
takes to get 2 Dumbledore cards.

@ Define: Count how many boxes until 2 Dumbledore cards appear.
@ Assumptions: Trials are independent; P(Dumbledore) = 0.12
© Assign Digits:

e 00-11 — Dumbledore (12 numbers)
e 12-99 — Other (88 numbers)

© Simulate using TI1-84: randInt(0,99,n)
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Simulation: How Many Boxes Until 2 Dumbledore Cards?

In Harry Potter and the Philosopher’s Stone, Ron Weasley says: I got about 6 of
him,” referring to Dumbledore cards in chocolate frogs.

Suppose 12% of boxes contain a Dumbledore card. Simulate how many boxes it
takes to get 2 Dumbledore cards.

@ Define: Count how many boxes until 2 Dumbledore cards appear.
@ Assumptions: Trials are independent; P(Dumbledore) = 0.12
© Assign Digits:

e 00-11 — Dumbledore (12 numbers)
e 12-99 — Other (88 numbers)

© Simulate using TI1-84: randInt(0,99,n)

Simulation 1: 30 35 36 8559 76 80 8225 99 26 737271 61 9 96 3 — 18 boxes
Simulation 2: 53 43 5 34 3363 7 — 7 boxes

Simulation 3: 89 31 61 9 81 83 23 41 81 97 14 11 — 12 boxes

Estimated average: 18112 — 12.33 boxes

Merrick Fanning June 23, 2025 29/84



Simulation: How Many Boxes Until 2 Dumbledore Cards?

In Harry Potter and the Philosopher’s Stone, Ron Weasley says: I got about 6 of
him,” referring to Dumbledore cards in chocolate frogs.

Suppose 12% of boxes contain a Dumbledore card. Simulate how many boxes it
takes to get 2 Dumbledore cards.

@ Define: Count how many boxes until 2 Dumbledore cards appear.
@ Assumptions: Trials are independent; P(Dumbledore) = 0.12
© Assign Digits:

e 00-11 — Dumbledore (12 numbers)
e 12-99 — Other (88 numbers)

© Simulate using TI1-84: randInt(0,99,n)

Simulation 1: 30 35 36 8559 76 80 822599 26 737271 61 9 96 3 — 18 boxes
Simulation 2: 53 43 5 34 33 63 7 — 7 boxes

Simulation 3: 89 31 61 9 81 83 23 41 81 97 14 11 — 12 boxes

Estimated average: 18112 — 12.33 boxes

Computer simulation (10,000 trials): ~ 16.63 boxes
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Conditional Probability

Conditional probability describes the probability of an event occurring given
that another event has already occurred.

Examples:

@ What's the probability someone is taller than 6’4" given they play in the
NBA?

@ Given someone is a heavy smoker, what is the probability they develop lung
cancer?

@ What is the probability of passing a test, given you studied for more than 5
hours?

Key idea: Conditional probability restricts the sample space. You're no longer

considering all possible outcomes, but only those for which the given condition is
true.
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Conditional Probability

Conditional Probability:

The conditional probability of event A given that event B has occurred is
denoted:

P(A| B)
It is defined as: P(AN B
P(A| B) = (p(B))

Important Distinctions:

e P(AnN B): Probability that both A and B occur - an intersection.

e P(A| B): Probability that A occurs, given that B has already
occurred (condition).

e P(B | A): Probability that B occurs, given A has occurred - note the
reversal in condition.
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Example: Conditional Probability

A town has 100 people: 40 are male (¥) and 60 are female (¥). Out of the 100 people, 16 have
competed in international math competitions.

@ What is the probability someone is a female given they have competed in a competition?

@ What is the probability of haven competed in a math competition, given the person
selected is a male?
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Conditional Probability: Sports Preferences

A statistician surveys 324 people:
@ 37 prefer hockey, the rest prefer soccer.
@ Of the 37 who prefer hockey, 32 are from Canada.
@ 48 people in total are from Canada, the rest (276) from Mexico.

(a) What is the probability someone prefers Hockey given they are from Mexico?

Merrick Fanning June 23, 2025 33/84



Conditional Probability: Sports Preferences

A statistician surveys 324 people:
@ 37 prefer hockey, the rest prefer soccer.
@ Of the 37 who prefer hockey, 32 are from Canada.
@ 48 people in total are from Canada, the rest (276) from Mexico.

(a) What is the probability someone prefers Hockey given they are from Mexico?

Canada | Mexico | Total
Hockey 32 5 37
Soccer 16 271 287
Total 48 276 324

We restrict to the 276 people from Mexico. Out of these, 5 prefer hockey.
P(Hockey | Mexico) = >
Y = 276

(b) What is the probability someone is both from Canada and prefers Hockey?
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Conditional Probability: Sports Preferences

A statistician surveys 324 people:
@ 37 prefer hockey, the rest prefer soccer.
@ Of the 37 who prefer hockey, 32 are from Canada.
@ 48 people in total are from Canada, the rest (276) from Mexico.

(a) What is the probability someone prefers Hockey given they are from Mexico?

Canada | Mexico | Total
Hockey 32 5 37
Soccer 16 271 287
Total 48 276 324

We restrict to the 276 people from Mexico. Out of these, 5 prefer hockey.

5
P(Hockey | Mexico) = —
(Hockey | Mexico) 57
(b) What is the probability someone is both from Canada and prefers Hockey?
32

P(Canada N Hockey) = oY
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Independent Events

Independent Events

Two events A and B are independent if the occurrence of one does not
affect the probability of the other.

Test for Independence:
e P(A| B)=P(A)
e P(B|A)=P(B)
@ Equivalent condition:

P(ANB) = P(A) - P(B)

If this condition is not met, the events are said to be dependent.
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Bayes' Theorem

Bayes’ Theorem

We know from the definition of conditional probability:

P(ANB)=P(A|B)-P(B)=P(B|A)-P(A)
Rearranging gives us Bayes’ Theorem:

P(B|A)-P(A)

P(AIB)= ==L

Interpretation: Bayes’ Theorem allows us to reverse conditional
probabilities - finding P(A|B) when P(B|A) is known.
It is especially useful when:

@ The probability of a cause given an outcome is needed.

e Diagnostic reasoning is involved (e.g. medical testing, spam filters).
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Example: Disease and Diagnostic Test (Tree Diagram)

Suppose the probability of carrying a certain disease is 0.023. A diagnostic test
has been developed to test for the presence of the disease. If an individual has the
disease, the test shows “positive” for the disease with a probability of 0.96.

However, if the individual does not have the disease, the test shows “positive” for
the disease with a probability of 0.02.

@ What is the probability that a person will test positive for the disease?
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Example: Disease and Diagnostic Test (Tree Diagram)

Suppose the probability of carrying a certain disease is 0.023. A diagnostic test
has been developed to test for the presence of the disease. If an individual has the
disease, the test shows “positive” for the disease with a probability of 0.96.
However, if the individual does not have the disease, the test shows “positive” for
the disease with a probability of 0.02.

@ What is the probability that a person will test positive for the disease?
e P(+|D)=0.96

P(D) = 0.023
— T P(—|D) = 0.04
—_ e P(+|D°) =0.02
P(D€) = 0.977
T P(—|D)=0.98
P(+) = P(+ND)+P(+nND°)
= (.023)(.96) + (.977)(.02)
0.04162
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Example: Disease and Diagnostic Test (Tree Diagram)

Suppose the probability of carrying a certain disease is 0.023. A diagnostic test
has been developed to test for the presence of the disease. If an individual has the
disease, the test shows “positive” for the disease with a probability of 0.96.
However, if the individual does not have the disease, the test shows “positive” for
the disease with a probability of 0.02.

@ What is the probability that a person has the disease given that they test
positive?

__ «P(+|D)=0.96
P(D) = 0.023

— ———— P(—|D) = 0.04
— e P(+]|D) =0.02

P(D€) = 0.977
———— P(—|D°) = 0.98
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Example: Disease and Diagnostic Test (Tree Diagram)

Suppose the probability of carrying a certain disease is 0.023. A diagnostic test
has been developed to test for the presence of the disease. If an individual has the
disease, the test shows “positive” for the disease with a probability of 0.96.
However, if the individual does not have the disease, the test shows “positive” for
the disease with a probability of 0.02.

@ What is the probability that a person has the disease given that they test

positive?
e P(+|D)=0.96
P(D) = 0.023
— T P(—|D)=0.04
T e P(+|D)=0.02
P(D¢) = 0.977
T P(—|D°) =10.98
P(D) - P(+|D
P(D|+) = ()P(+()|)
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Example: Alpine Skiing (Tree Diagram 2)

11.6% of Canadians live in Alberta, 13.5% in B.C., and 22.6% in Quebec. 74% of
Albertans enjoy alpine skiing, 68% of B.C. residents enjoy it, and 33% of Quebec
residents enjoy it. If a person is not from Alberta, B.C., or Quebec (i.e., Other =
52.3%), there is a 54% chance they do not enjoy alpine skiing.

(a) What is the probability someone is from Alberta given they do not
enjoy Alpine skiing?

Merrick Fanning June 23, 2025 38/84



Example: Alpine Skiing (Tree Diagram 2)

11.6% of Canadians live in Alberta, 13.5% in B.C., and 22.6% in Quebec. 74% of
Albertans enjoy alpine skiing, 68% of B.C. residents enjoy it, and 33% of Quebec
residents enjoy it. If a person is not from Alberta, B.C., or Quebec (i.e., Other =
52.3%), there is a 54% chance they do not enjoy alpine skiing.

(a) What is the probability someone is from Alberta given they do not
enjoy Alpine skiing?

P(E€) = P(Albertan E°) + P(B.C. N E) + P(Quebec N E) + P(Other N E€)
= (0.116)(0.26) + (0.135)(0.32) + (0.226)(0.67) + (0.523)(0.54)
= 0.03016 + 0.04320 + 0.15142 4 0.28242 = 0.5072

P(Albertan E€)  (0.116)(0.26) _ 0.03016

- - ~ 0.0595
P(E€) 0.5072 0.5072

P(Alberta | E€) =

Final Answer: ‘ P(Alberta | E) ~ 6%

Merrick Fanning June 23, 2025 38/84



Random Variables

Random Variables offer a way to assign numeric values to outcomes of a
random experiment.
Example: Roll two 3-sided dice. The sample space is:

S ={11,12,13,21,22, 23,31, 32, 33}

Let X be the number of ones rolled. X is a random variable that varies with
each outcome.
We define the probabilities using the values of X:

4
P(X =0) = P(22) + P(23) + P(32) + P(33) = 9
4
P(X =1)=P(12) + P(13) + P(21) + P(31) = 5
P(X =2)=P(11) = é
The values of X (0, 1, 2) are mutually exclusive, so:
4 4 1
P(X—Oor10r2)—§—|—§+§—1
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Types of Random Variables

Random variables can be either qualitative (categorical) or quantitative
(numerical). In this unit, we focus on quantitative random variables, which fall
into two categories:

© Discrete Random Variables

e Binomial

o Geometric

o Hypergeometric
o Poisson

@ Continuous Random Varaiables

Uniform

o
o Normal
o
o

X2

tar

We will explore both types throughout the chapter. For now, we'll begin with
discrete random variables.
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Probability Distributions for Discrete Random Variables

Example: Flip two coins. Let X be the number of heads. Then X € {0,1,2} and:

0
S={TT,HT,TH,HH} = P(X =1) =050
2

Probability Distribution Table:

P(X =x) | 025 | 0.50 | 0.25

Cumulative Distribution Table:

x 0] 1] 2
P(X <x)| 025 0.75 | 1.00
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Visualizing Distributions for X (Heads in Two Coin Flips)

Probability Distribution Cumulative Distribution
P(X = x) P(X < x)
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Expected Value: Basketball Shot Simulation

A basketball player shoots 3 times. Historically, she makes 1 out of every 5 shots
(20% success rate). Let X be the number of shots made.

(a) Estimate E[X] using Simulation:
@ Assign digits: 00-19 for made shots, 20-99 for missed shots.

@ Use a random number generator (e.g., TI-84: randInt(0,99,3)).

Trial | Random Digits | X
1 76, 21, 91 0
2 57, 36, 38 0
3 54, 18, 00 2
4 05, 56, 54 1

Estimated E[X] = &02H — 0.75 (rough estimate from 4 trials)

Running 100,000 simulations in R gives: E[X] ~ 0.6
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Probability Distribution: Basketball Shooter

A basketball player makes a shot with probability 0.2. Suppose they take 3 shots.
Let the random variable X represent the number of shots made.

We compute the theoretical probabilities:

P(X =0) =(0.8)*=0.512
P(X =1) =3(0.2)(0.64) =0.384
P(X =2) =3(0.04)(0.8) =0.096
P(X =3) =(0.2)3=0.008
Summary Table:
X 0 1 2 3

P(X =x) | 0.512 | 0.384 | 0.096 | 0.008

Merrick Fanning June 23, 2025 44 /84



Expected Value via Simulation Logic

Let X be the number of shots made out of 3 attempts. The distribution is:

X 0 1 2 3
P(X = x) 0.512 | 0.384 | 0.096 | 0.008
Expected count (n trials) | 0.512n | 0.384n | 0.096n | 0.008n
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Expected Value via Simulation Logic

Let X be the number of shots made out of 3 attempts. The distribution is:

X 0 1 2 3
P(X = x) 0.512 | 0.384 | 0.096 | 0.008
Expected count (n trials) | 0.512n | 0.384n | 0.096n | 0.008n

Average value across n trials:

0.512n(0) + 0.384n(1) + 0.096n(2) + 0.008n(3)

E[X] = :
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Expected Value via Simulation Logic

Let X be the number of shots made out of 3 attempts. The distribution is:

X 0 1 2 3
P(X = x) 0.512 | 0.384 | 0.096 | 0.008
Expected count (n trials) | 0.512n | 0.384n | 0.096n | 0.008n

Average value across n trials:

0.512n(0) + 0.384n(1) + 0.096n(2) + 0.008n(3)
n

E[X] =

Cancel n and simplify:

E[X] = 0(0.512) + 1(0.384) + 2(0.096) + 3(0.008) =
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Expected Value of a Discrete Random Variable

Definition: The expected value of a discrete random variable X (denoted E(X)

or f1x) represents the long-run average value of X over many repetitions of an
experiment.
Formula:

E[X]=xi-p(x1) +x2- p(x2) + - 4 Xp - p(xn) = ZX,' - p(x;)

Alternatively written as:

EIX] = 3 x p(x)

all x

Prove these key properties:
@ E(c)=c (constant)
o E(aX)=a-E(X) (scaling)
@ E(aX+c)=a-E(X)+¢c (scaling + shifting)
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Example: Expected Value Transformation

In a trivia contest you win $5 for each correct answer, but must pay a flat $2 fee.

Let X be the number of correct answers out of 3. the distribution of X is shown
below:

x 0] 1] 273
P(X=x) | 03[04]02]01

@ Determine the expected number of correct answers out of three.
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Example: Expected Value Transformation

In a trivia contest you win $5 for each correct answer, but must pay a flat $2 fee.

Let X be the number of correct answers out of 3. the distribution of X is shown
below:

x 0] 1] 273
P(X=x) | 03[04]02]01

@ Determine the expected number of correct answers out of three.
E(X) =0(0.3) + 1(0.4) + 2(0.2) +3(0.1) = 1.1

@ Determine the expected net winnings.
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Example: Expected Value Transformation

In a trivia contest you win $5 for each correct answer, but must pay a flat $2 fee.

Let X be the number of correct answers out of 3. the distribution of X is shown
below:

x 0] 1] 273
P(X=x) | 03[04]02]01

@ Determine the expected number of correct answers out of three.
E(X) =0(0.3) + 1(0.4) + 2(0.2) +3(0.1) = 1.1
@ Determine the expected net winnings.
E(Y)=E(5X —2) =5E(X)—2=5(1.1) -2 =

Conclusion: Expected net earnings are $3.50 per game.

Merrick Fanning June 23, 2025 47 /84



Distribution and Expected Value: Red Cards in Poker

In a game of poker, you are dealt 5 cards from a standard deck. Let Y be the
number of red cards in your hand.

(a) Find the Distribution for Y:
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Distribution and Expected Value: Red Cards in Poker

In a game of poker, you are dealt 5 cards from a standard deck. Let Y be the
number of red cards in your hand.

(a) Find the Distribution for Y:

y 0 1 2 3 4 5
P(Y =y) | 0.0253 | 0.1496 | 0.3251 | 0.3251 | 0.1496 | 0.0253

These values come from:
(2)/6) (52—6y)
(%)

P(Y =y) =

(b) Determine the Expected Value for Y:
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Distribution and Expected Value: Red Cards in Poker

In a game of poker, you are dealt 5 cards from a standard deck. Let Y be the
number of red cards in your hand.

(a) Find the Distribution for Y:

y 0 1 2 3 4 5
P(Y =y) | 0.0253 | 0.1496 | 0.3251 | 0.3251 | 0.1496 | 0.0253

These values come from:
(2)/6) (52—6y)
(%)

P(Y =y) =

(b) Determine the Expected Value for Y:

E[Y]=> y-P(Y =y) =0(0.0253) + 1(0.1496) + - - - + 5(0.0253) =

Merrick Fanning June 23, 2025 48 /84



Variance via Simulation Logic

(c) Estimate Var(Y) using simulation.
@ 26 of 52 cards are red = P(Red) = 0.5
@ Assign 0-25 to red cards, 26—99 to black cards
@ Sample without replacement

Run simulations and compute deviations:

Sim # | Random Draw [ Y [ Y —py [ (Y — uy)?
1 4112253544 | 2 -0.5 0.25
2 3647060428 | 2 -0.5 0.25
3 1217143806 | 4 15 2.25
4 3426101503 | 3 0.5 0.25

Estimate the variance:

0.25 4 0.25 4 2.25 4+ 0.25
Var(Y) ~ 2227 : T2 _[0.75]

Why not use average distance from the mean?
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Variance via Simulation Logic

Let Y be the number of red cards in a 5-card hand. From earlier:

y 0 1 2 3 4 5
P(Y =y) | 0.0253 | 0.1496 | 0.3251 | 0.3251 | 0.1496 | 0.0253

We previously calculated py = 2.5
If we simulate n trials, we expect about np(y) values of each y.

Average of squared deviations:

Var(Y) = % > () (y — py)?

=> p(y)(y —25)
—[1.151961

So:  Var(Y)=E[(Y —ny)?

Merrick Fanning June 23, 2025 50/84



Variance and Standard Deviation

Variance: Measures the average squared deviation from the mean.

Var(X) = E [(X — ux)?]

@ Variance gives a sense of how spread out the values of a random variable are.

@ Units of variance are the square of the units of the original variable.

Standard Deviation: The square root of the variance. It brings the measure of
spread back to the original units.

SD(X) = VVar(X) or ox =/o%

@ Easier to interpret because it matches the units of X.

@ Commonly used to describe typical deviation from the mean.
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An Alternative Formula for Variance

Another useful formula for variance.

[Var(¥) = E¥?] - (E[])?]

Proof:
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An Alternative Formula for Variance

Another useful formula for variance.

[Var(¥) = E¥?] - (E[])?]

Proof:

Var(Y) = E[Y? = 2uy Y + 1i3]
= E[Y?] = 2uy E[Y] + 1%
= E[Y?] =243 + 1%
= E[Y?] 1%
= E[Y?] - (E[Y])®
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Example: Variance Using Shortcut Formula

Let X be the number of heads when flipping two coins. Then:

x | x> ] P(X =x)
0|0 0.25
1)1 0.50
2| 4 0.25

© Compute E[X] and E[X?]
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Example: Variance Using Shortcut Formula

Let X be the number of heads when flipping two coins. Then:

x | x> ] P(X =x)
0|0 0.25
1)1 0.50
2| 4 0.25

@ Compute E[X] and E[X?]
E[X] = 0(0.25) + 1(0.50) 4 2(0.25) = 1
E[X?] = 0(0.25) + 1(0.50) + 4(0.25) = 1.5
@ Calculate Var(x)
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Example: Variance Using Shortcut Formula

Let X be the number of heads when flipping two coins. Then:

x | x> ] P(X =x)
0|0 0.25
1)1 0.50
2| 4 0.25

© Compute E[X] and E[X?]
E[X] = 0(0.25) + 1(0.50) +2(0.25) = 1
E[X?] = 0(0.25) + 1(0.50) + 4(0.25) = 1.5

@ Calculate Var(x)

Var(X) = E[X?] - (E[X])? = 1.5 — (1)? =
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Discrete Random Variables in This Course

In this course, we will study four important discrete random variables. Only the
first two are part of the AP Statistics Curriculum.

@ Binomial Distribution (AP Required)
Describes the number of successes in a fixed number of independent trials,
each with the same probability of success.

@ Geometric Distribution (AP Required)
Describes the number of trials needed to get the first success in a sequence
of independent trials with the same probability of success.

@ Hypergeometric Distribution (Pseudo - Enrichment)
Like the binomial, but without replacement. Describes the number of
successes in a sample drawn without replacement from a finite population.

@ Poisson Distribution (Enrichment)
Describes the number of occurrences of an event in a fixed interval of time
or space when events occur independently at a constant average rate.
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Binomial Random Variables

Example: A basketball player makes 75% of free throws. During practice, she
takes 8 shots. Let X be the number of shots she makes.

This situation can be modeled by a binomial random variable. Why?

@ Each shot is either a make (success) or a miss (failure).
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Binomial Random Variables

Example: A basketball player makes 75% of free throws. During practice, she
takes 8 shots. Let X be the number of shots she makes.

This situation can be modeled by a binomial random variable. Why?

@ Each shot is either a make (success) or a miss (failure).

@ The number of shots (n = 8) is fixed.
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Binomial Random Variables

Example: A basketball player makes 75% of free throws. During practice, she
takes 8 shots. Let X be the number of shots she makes.

This situation can be modeled by a binomial random variable. Why?

@ Each shot is either a make (success) or a miss (failure).

@ The number of shots (n = 8) is fixed.

@ The probability of success on each shot is constant, p = 0.75.
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Binomial Random Variables

Example: A basketball player makes 75% of free throws. During practice, she
takes 8 shots. Let X be the number of shots she makes.
This situation can be modeled by a binomial random variable. Why?

@ Each shot is either a make (success) or a miss (failure).
@ The number of shots (n = 8) is fixed.
@ The probability of success on each shot is constant, p = 0.75.

@ Each shot is independent of the others.
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Binomial Random Variables

Example: A basketball player makes 75% of free throws. During practice, she
takes 8 shots. Let X be the number of shots she makes.
This situation can be modeled by a binomial random variable. Why?

@ Each shot is either a make (success) or a miss (failure).
@ The number of shots (n = 8) is fixed.
@ The probability of success on each shot is constant, p = 0.75.

@ Each shot is independent of the others.

Definition: A random variable X is binomial if it counts the number of successes
in n independent trials, each with the same probability of success p.

Notation: X ~ Binomial(n, p)
Probability Mass Function:

P(X = k) = (:)pk(l —p)" K, fork=0,1,2,...,n
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Mean and Variance of a Binomial Variable

If X ~ Binomial(n, p), then:

@ Mean (Expected Value):

p=E[X]=np
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Mean and Variance of a Binomial Variable

If X ~ Binomial(n, p), then:

@ Mean (Expected Value):
p=E[X]=np

@ Variance:
0% = Var(X) = np(1 — p)

@ Standard Deviation:

o =+/np(l—p)

Interpretation:
@ E[X] is the average number of successes in n trials.

@ Var(X) and SD(X) measure the variability in the number of successes.
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Proving Expected Value and Variance for Binomial

Random Variables

We will prove the expected value and variance for binomial random
variables using three different methods (see class notes):

© Direct algebraic proof
@ Sum of Bernoulli Random Variables

© Moment Generating Functions
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Moment Generating Functions (MGFs)

Definition: The moment generating function (MGF) of a random variable X
is defined as:

Mx(t) = E[e%¥]

if the expectation exists for values of t in an open interval around 0.
Why it’s useful:

@ MGFs encode all moments (like mean and variance) of a random variable.
@ The kth moment of X is given by:
XM= M0
That is, the kth derivative of the MGF evaluated at t = 0.
To find the expected value (mean):
E[X] = Mx(0)
Example: If Mx(t) = e3+2% then:
Mi () = 3e3t+2t + 4te3tt2t’
= E[X] = Mx(0) =3
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Geometric Random Variables

Example: A basketball player makes 75% of free throws. She shoots until she
makes her first basket. Let X be the number of shots it takes to make her first
successful free throw.

This situation is modeled by a geometric random variable. Why?

@ Each shot is either a success (make) or failure (miss).

@ The probability of success on each shot is constant, p = 0.75.

@ The trials are independent.

@ We are counting the number of trials until the first success.
Definition: A random variable X is geometric if it counts the number of
independent trials until the first success.

Notation: X ~ Geometric(p)
Probability Mass Function (PMF):

P(X=k)y=(Q—-p)<t.p fork=1,2,3,...
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Proving Expected Value and Variance for Geometric

Random Variable

We will prove the expected value and variance for binomial random
variables using three different methods (see class notes):

@ Geometric Series
@ Moment Generating Functions
© Method from Calculus
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Mean, Variance, and SD of Geometric Random Variables

Let X ~ Geometric(p), where p is the probability of success on each trial.

Mean (Expected Value):
1
EX]==
X1=2

Variance:

Var(X) = 1 ;2’)

Standard Deviation:

SD(X) = /Var(X) = 1p_ i
Example: If p = 0.75 (free throw success rate):
1 - v/0.2
EIX] = 5o =[13] sD(x) = 2
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Introducing the Hypergeometric Distribution

Example: A box contains 10 marbles: 4 are red and 6 are blue. You randomly

draw 3 marbles without replacement. Let X be the number of red marbles
drawn.

This scenario is modeled by a hypergeometric random variable. Why?
@ The population size is fixed: N =10
@ The number of successes in the population is fixed: r = 4 red marbles
@ The sample size is fixed: n = 3 draws

@ Sampling is done without replacement

Therefore: X ~ Hypergeometric(N = 10,r = 4,n = 3)

pox - = G2

(5)

for x=10,1,2,3
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Hypergeometric Random Variables

Let X ~ Hypergeometric(N, r, n), where:
@ N: Population size
@ r: Number of successes in the population
@ n: Sample size drawn without replacement

X counts the number of successes in a random sample of size n drawn without
replacement from a population of size N that contains r successes.

1. Probability Mass Function:
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Hypergeometric: Mean, Variance, and Standard Deviation

Let X ~ Hypergeometric(N, r, n), where:
@ N: Population size
@ r: Number of successes in the population
@ n: Sample size drawn without replacement

Mean (Expected Value):

Variance:

Var(X)—n~/:/~(1—/:l).<x:’17>

Standard Deviation:
SD(X) = +/Var(X)

Note: This is similar to the binomial variance, but includes a correction factor
%:'1’ because the draws are without replacement.
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Poisson Random Variables from Binomial (Enrichment)

Example: A police officer observes cars for 1 hour. On average, 5 cars speed per
hour. Let X be the number of cars speeding per hour.
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Poisson Random Variables from Binomial (Enrichment)

Example: A police officer observes cars for 1 hour. On average, 5 cars speed per
hour. Let X be the number of cars speeding per hour.

Break the hour into 6 equal intervals (10 minutes each). Assume at most one
speeder per interval. An approximation is X ~ Binomial(n =6,p = %)

10 min

>

L 1 1 1 1 1 ]
n = 6 intervals

Merrick Fanning June 23, 2025 65 /84



Poisson Random Variables from Binomial (Enrichment)

Example: A police officer observes cars for 1 hour. On average, 5 cars speed per
hour. Let X be the number of cars speeding per hour.

Break the hour into 6 equal intervals (10 minutes each). Assume at most one
speeder per interval. An approximation is X ~ Binomial(n =6,p = %)

10 min

>

L 1 1 1 1 1 ]
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Poisson Random Variables from Binomial (Enrichment)

Example: A police officer observes cars for 1 hour. On average, 5 cars speed per
hour. Let X be the number of cars speeding per hour.

Break the hour into 6 equal intervals (10 minutes each). Assume at most one
speeder per interval. An approximation is X ~ Binomial(n =6,p = %)

10 min

>

L 1 1 1 1 1 ]
n = 6 intervals

Now refine to 60 one-minute intervals. Then X ~ Binomial(n = 60,p = =)

60/"

10 min
>

o nn e n el

©
1 min n = 60 intervals
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Poisson Random Variables from Binomial (Enrichment)

Example: A police officer observes cars for 1 hour. On average, 5 cars speed per
hour. Let X be the number of cars speeding per hour.

Break the hour into 6 equal intervals (10 minutes each). Assume at most one
speeder per interval. An approximation is X ~ Binomial(n =6,p = %)

10 min

>

L 1 1 1 1 1 ]
n = 6 intervals

Now refine to 60 one-minute intervals. Then X ~ Binomial(n = 60,p = =)

60/
10 min
>
LLLL Ll L LI Ll llaly
A4 .
1 min n = 60 intervals

Take the limit:

X n—x x .—5
P(X = x) = lim <") <5) (15> _e 012,
n—oo \ X n n x|
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Poisson Distribution Summary

The Poisson distribution models the number of events that occur in a fixed
interval of time or space, assuming:

@ Events occur independently
@ Events occur at a constant average rate )\

@ Two events cannot occur at exactly the same instant (i.e., events are rare
and discrete)

Probability Mass Function (PMF):

Ae=H
x!

P(X =x) = x=0,1,2,...
Parameter: \ > 0, the average number of occurrences in the interval

Expected Value: E(X) =\
Variance: Var(X) = A
Standard Deviation: ox = v\
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Which Random Variable?

For each situation, identify the appropriate random variable type.

© A basketball player shoots 10 free throws. Let X be the number of shots
made.
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Which Random Variable?

For each situation, identify the appropriate random variable type.

© A basketball player shoots 10 free throws. Let X be the number of shots
made. Binomial

@ A call center receives an average of 3 calls per minute. Let X be the number
of calls in one minute.
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Which Random Variable?

For each situation, identify the appropriate random variable type.

© A basketball player shoots 10 free throws. Let X be the number of shots
made. Binomial

@ A call center receives an average of 3 calls per minute. Let X be the number
of calls in one minute. Poisson

© Cards are drawn from a deck without replacement. Let X be the number of
red cards in a hand of 5 cards.
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Which Random Variable?

For each situation, identify the appropriate random variable type.

© A basketball player shoots 10 free throws. Let X be the number of shots
made. Binomial

@ A call center receives an average of 3 calls per minute. Let X be the number
of calls in one minute. Poisson

© Cards are drawn from a deck without replacement. Let X be the number of
red cards in a hand of 5 cards. Hypergeometric

© A factory tests items until the first defective one is found. Let X be the
number of items tested.

Merrick Fanning June 23, 2025 67 /84



Which Random Variable?

For each situation, identify the appropriate random variable type.

© A basketball player shoots 10 free throws. Let X be the number of shots
made. Binomial

@ A call center receives an average of 3 calls per minute. Let X be the number
of calls in one minute. Poisson

© Cards are drawn from a deck without replacement. Let X be the number of
red cards in a hand of 5 cards. Hypergeometric

© A factory tests items until the first defective one is found. Let X be the
number of items tested. Geometric

© A quiz has 5 multiple choice questions. Let X be the number answered
correctly by random guessing.
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Which Random Variable?

For each situation, identify the appropriate random variable type.

© A basketball player shoots 10 free throws. Let X be the number of shots
made. Binomial

@ A call center receives an average of 3 calls per minute. Let X be the number
of calls in one minute. Poisson

© Cards are drawn from a deck without replacement. Let X be the number of
red cards in a hand of 5 cards. Hypergeometric

© A factory tests items until the first defective one is found. Let X be the
number of items tested. Geometric

© A quiz has 5 multiple choice questions. Let X be the number answered
correctly by random guessing. Binomial

@ A traffic officer counts the number of speeding violations in a 2-hour period.
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Which Random Variable?

For each situation, identify the appropriate random variable type.

© A basketball player shoots 10 free throws. Let X be the number of shots
made. Binomial

@ A call center receives an average of 3 calls per minute. Let X be the number
of calls in one minute. Poisson

© Cards are drawn from a deck without replacement. Let X be the number of
red cards in a hand of 5 cards. Hypergeometric

© A factory tests items until the first defective one is found. Let X be the
number of items tested. Geometric

© A quiz has 5 multiple choice questions. Let X be the number answered
correctly by random guessing. Binomial

@ A traffic officer counts the number of speeding violations in a 2-hour period.
Poisson
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Sums and Differences of Independent Random Variables

Let X and Y be two independent random variables. Then for any constants a
and b:

Mean of a Linear Combination

E(aX + bY) = aE(X) + bE(Y)

Variance of a Linear Combination

| \

Var(aX + bY) = a*Var(X) + b?Var(Y)

Important: These formulas only apply if X and Y are independent.

Note: We can compute the mean and variance of Z = aX + bY, but we may not
know the full probability distribution of Z.
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Example: Combining Independent Random Variables

Let X ~ Binomial(n = 10, p = 0.4), and Y ~ Binomial(n = 15, p = 0.6), with X
and Y independent.

Let Z=X+Y. Then:

X Y
Mean 10(0.4) =4 15(0.6) =9
Variance | 10(0.4)(0.6) = 2.4 | 15(0.6)(0.4) = 3.6

Then:
° E(Z)=E(X)+E(Y)=4+9=[13]
@ Var(Z) = Var(X)+ Var(Y)=24+3.6= m

® SD(Z) = V6.0 ~[2.45]
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Sums and Differences Without Independence (Enrichment)

Let X and Y be two random variables (not necessarily independent). For
constants a and b:

Mean (still the same)

E(aX + bY) = aE(X) + bE(Y)

Variance (requires covariance)

Var(aX + bY) = a®Var(X) + b?Var(Y) + 2ab Cov(X, Y)

o Cov(X,Y) = E[(X — ux)(Y — py)]
@ If X and Y are independent, then Cov(X,Y) =0

Important: The independence assumption simplifies calculations-without it, we
must account for how the two variables move together.
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Discrete vs. Continuous Random Variables

Discrete Random Variables take on a finite or countable number of values.
@ Example: X = {number of heads in 5 coin flips}

@ Visualized using a probability mass function (pmf)

Continuous Random Variables take on an infinite (uncountable) number of
values.

@ Example: Y = time it takes for a light to change
@ Visualized using a probability density function (pdf)

We must now rethink how we assign and visualize probabilities when the number
of possible outcomes is infinite.
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Comparing PMF and PDF

Discrete Random Variable (PMF)

p(x)

[ 1] I —

0 1 2 3 4 5 X

PMF: Assigns probability to each countable outcome. > p(x) =1
Continuous Random Variable (PDF)

f(y)

PDF: Probability is area under curve. [ f(y)dy =1
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Probability Density Functions (PDFs)

A probability density function (PDF) is a function that describes the likelihood
of a continuous random variable taking on values within a certain range.

Properties of PDFs:
@ f(y) >0 for all values of y
e A density function can never be negative.

o0
o [ fa-1
— 00
o The total area under the curve is always 1.
o This represents the total probability across all outcomes.
Important Reminder:
@ The probability at a single point is always zero: P(Y =a) =0

@ Only ranges of values (areas under the curve) have nonzero probability.
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Cumulative Distribution Functions (CDFs)

Definition: The cumulative distribution function (CDF) of a random variable
Y gives the probability that Y is less than or equal to a value a:

F(a) = P(Y < a)

F(y) is the total area under f(y) from —oo to y:

F) = [ fod 1) = 2F0)

04
03
Boz

01

0.0
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Mean and Variance for Continuous Random Variables

Expected Value: Just like in the discrete case, the expected value is the
theoretical long-run average of the variable. For discrete random variable X:

E(X) =3 x- p(x)

all x

For continuous random variable Y with pdf f(y):

oo

E(Y)= /y-f(y)dy

—0o0

Variance: Measures how spread out values of Y are from its mean puy.
Var(Y) = E[(Y — py)?] = E(Y?) - [E(V)P

Note: These formulas are direct analogues to the discrete case, just replacing
sums with integrals.
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Uniformly Distributed Random Variables

A continuous random variable Y is uniformly distributed on the interval [a, b] if
it has constant density throughout the interval.

@ Derive the pdf for X that is uniformly distributed on the interval [a, b].

Merrick Fanning June 23, 2025 76 /84



Uniformly Distributed Random Variables

A continuous random variable Y is uniformly distributed on the interval [a, b] if
it has constant density throughout the interval.

@ Derive the pdf for X that is uniformly distributed on the interval [a, b].

@ Derive the mean and variance for X directly
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Uniformly Distributed Random Variables

A continuous random variable Y is uniformly distributed on the interval [a, b] if
it has constant density throughout the interval.

@ Derive the pdf for X that is uniformly distributed on the interval [a, b].
@ Derive the mean and variance for X directly

© Determine the moment generating function for X
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Uniformly Distributed Random Variables

A continuous random variable Y is uniformly distributed on the interval [a, b] if
it has constant density throughout the interval.

@ Derive the pdf for X that is uniformly distributed on the interval [a, b].
@ Derive the mean and variance for X directly

© Determine the moment generating function for X
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Uniform Random Variables

Uniform Random Variables model outcomes that are equally likely over an
interval [a, b]. We write:

Y ~ Uniform(a, b)
Probability Density Function (PDF):

1
— f <y<
fly)=db—a ora<y<b

0 otherwise

Cumulative Distribution Function (CDF):

0 fory < a
F(y) = };—:j fora<y<b

1 fory > b

Expected Value and Variance:

E(Y) = a;b7 Var(v) = Iza)
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Normal Random Variables

Normally Distributed Random Variables are the most widely used type of

random variable in statistics. The normal (or Gaussian) distribution forms the
familiar bell curve.

1 _=m?
Y ~ Normal(p, o) fly) =

e 2052

2no
@ 1 is the mean (center) of the distribution.

@ o is the standard deviation (spread).

@ E(Y)=p, Var(Y)=o02
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The Standard Normal Distribution

The standard normal distribution is a normal distribution with:
Z ~ Normal(0, 1)

That is, mean p = 0 and standard deviation ¢ = 1.

Any normal random variable X ~ Normal(y, o) can be transformed into a
standard normal variable Z using:

What is a z-score?
@ A z-score tells us how many standard deviations a value is from the mean.

@ A value x can be rewritten as: x = y + zo

X —fu
g

@ Rearranging gives: z =
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Sums and Differences of Normal Random Variables

Suppose we have normal random variables Xi, X5,

..., X where
X; ~ Normal(u;, o).

Let:
U=a X1+ aXo+ -+ a,X,

Then U is also normally distributed:

n n
2 2
U ~ Normal ( E ajlti E as 0’,-)
i=1 i=1

Example:

@ Let X ~ Normal(5,3) and Y ~ Normal(2, 2)
@ Find the distribution of 2X + 3Y

2X +3Y ~ Normal (2(5) + 3(2), 2*(3%) + 3?(2?)) = Normal(16,72)
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The 2 Distribution

Definition: y2 denotes a x? distribution with k degrees of freedom.
@ Mean: E(X) =k
@ Variance: Var(X) = 2k
@ The shape is right-skewed, especially for small k

@ Becomes more symmetric as k increases

Chi-Square Distributions for Various Degrees of Freedom

«© _]
° DF
— df=1
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The t-Distribution

A t, distribution can be defined as the ratio of a standard normal variable
Z and the square root of a chi-square variable divided by its degrees of

freedom:
Z

>[5

Key Properties:
@ Symmetric, bell-shaped, and centered at 0.

@ Heavier tails than the normal distribution (more probability in the
extremes).

@ As degrees of freedom increase, it approaches the normal distribution.

@ Used when estimating population means with small samples or
unknown standard deviations.
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William Sealy Gosset and the t-Distribution

William Sealy Gosset (1876-1937) was a chemist and statistician who worked
at the Guinness Brewery in Dublin.

@ At Guinness, Gosset was tasked with improving the quality of stout using
better statistical methods for small samples.

@ He developed the t-distribution to solve problems of inference when sample
sizes were small and population standard deviation was unknown.

@ Guinness had strict rules against employees publishing research, so Gosset
wrote under the pseudonym “Student”.

@ His 1908 paper “The Probable Error of a Mean” introduced the now-famous
Student’s t-distribution.

@ The t-distribution became one of the cornerstones of modern statistics,
particularly in small-sample hypothesis testing.

Fun fact: Gosset and R.A. Fisher were close collaborators, and their work laid
the foundations for modern statistical inference.
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nd AP: More Continuous Distributions

In university-level probability and statistics, students explore a variety of
continuous distributions beyond those required in AP Statistics. These are often
used in modeling, simulation, and theoretical work.

@ Exponential Distribution:

e Models waiting times between independent events (e.g., time until the
next customer arrives).
e Memoryless property.

@ Gamma Distribution:

o Generalization of the exponential distribution.
o Used to model wait times for multiple events.

@ Beta Distribution:
e Used for modeling random variables that are constrained to an interval
[0,1].
e Appears in Bayesian statistics.
@ Weibull Distribution:
e Often used in reliability engineering and survival analysis.
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