AP STATISTICS UNIT 4 – QUICK NOTES

1. Probability Basics

Event: A set of outcomes from a random process. **Sample space** (S): All possible outcomes. **Notation:** P(A), A^c (complement), $A \cap B$ (both occur), $A \cup B$ (at least one occurs).

Rules

- 0 < P(A) < 1 (probability is always between 0 and 1)
- P(S) = 1 (the probability of the whole sample space is 1)
- Addition Rule:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

If mutually exclusive: $P(A \cap B) = 0$, so $P(A \cup B) = P(A) + P(B)$.

Example: Rolling a die: P(even or prime) = P(even) + P(prime) - P(even and prime).

2. Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

"Given" means the sample space is restricted to cases where B has occurred.

Independence: A and B are independent if P(A|B) = P(A) or equivalently $P(A \cap B) = P(A)P(B)$.

Example: If P(hockey|Canada) = 0.67 but P(hockey) = 0.67, they are independent.

3. Law of Total Probability & Bayes

Law of Total Probability:

$$P(A) = P(A \cap B) + P(A \cap B^{c})$$

Breaks A into cases based on whether B happens.

Bayes' Theorem:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Reverses conditional probabilities; useful for diagnostic testing.

Example: Given test accuracy and disease rate, find P(disease|positive).

4. Counting

Multiplication Rule: If first step has m outcomes and second has n, total = $m \times n$.

Permutations (order matters):

$$P(n,r) = \frac{n!}{(n-r)!}$$

Combinations (order doesn't matter):

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Example: Choosing 3 students from $10 = \binom{10}{3}$.

5. Simulation Steps

- 1. State problem clearly.
- 2. Identify assumptions (e.g., independence, fixed p).
- 3. Assign numbers to outcomes.
- 4. Simulate many trials (random digits, calculator, computer).
- 5. Estimate probability from relative frequency.

Simulations approximate probabilities when theory is complex.

6. Random Variables

A random variable assigns a number to each outcome. Expected Value (mean):

$$E[X] = \sum x_i P(x_i)$$

Variance:

$$Var(X) = E[(X - \mu_x)^2] = \sum_{i=1}^{\infty} (x_i - \mu_i)^2 P(x_i) = E[X^2] - E[X]^2$$

Std. deviation: $\sigma = \sqrt{\operatorname{Var}(X)}$.

Example: Payoff with probabilities: multiply each outcome by its probability and sum.

7. Special Discrete Distributions

Binomial: Fixed n, success/failure, independent, constant p.

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

 $\mu = np$, $\sigma^2 = np(1-p)$.

Geometric: Trials until first success.

$$P(Y = k) = (1 - p)^{k-1}p, \quad E[Y] = \frac{1}{p}$$

8. Continuous Distributions

Normal: $N(\mu, \sigma)$, use $z = \frac{x-\mu}{\sigma}$ and normalcdf.

Mean of sums/differences: $E(X\pm Y)=E(X)\pm E(Y)$. Variance (independent): $\text{Var}(X\pm Y)=\text{Var}(X)+\text{Var}(Y)$.

Example: Two independent sample means: variances add.

9. Independence vs. Mutually Exclusive

- Mutually exclusive: $P(A \cap B) = 0$ (cannot occur together).
- Independent: $P(A \cap B) = P(A)P(B)$.
- Cannot be both if P(A), P(B) > 0.