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Normal Approximation to the Binomial Distribution

A discrete binomial variable can be approximated by a continuous
normal variable.

This is useful when the binomial formula becomes computationally
intensive for large n.

This concept will be very important later in statistical inference.
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Binomial Shape at Small n = 10

Let’s consider several values of p with n = 10.

p = 0.5: symmetric, bell-shaped

p = 0.1: right-skewed

p = 0.9: left-skewed
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Effect of Increasing n (to 200)

Let’s keep the same values of p, but increase n to 200:

As n increases, the binomial distribution looks more normal - even for
skewed p values.
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When is the Normal Approximation Valid?

Rule of Thumb

The normal approximation is appropriate if:

np ≥ 10 and n(1− p) ≥ 10

Interpreted as having at least 10 expected successes and 10 expected
failures.

Use:
µ = np, σ =

√
np(1− p)
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Example: No Continuity Correction

A basketball player has a 12% chance of making a free throw. Estimate the
probability they make 18 or more in 100 shots.
Check approximation validity:

np = 12, n(1− p) = 88 ⇒ valid

µ = 12, σ =
√
100(0.12)(0.88) ≈ 3.25

z =
18− 12

3.25
≈ 1.85 ⇒ P(Z > 1.85) ≈ 0.0324

About 3.2% chance of making at least 18 shots.
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Why Use a Continuity Correction?

We’re approximating a discrete variable with a continuous one. So we may
also apply a continuity correction.

Without correction, we ignore part of the probability mass.

For better accuracy, use x = 17.5 instead of 18.
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Continuity Correction Summary

Binomial Normal Approximation
P(X = x) P(x − 0.5 ≤ X ≤ x + 0.5)

P(X ≤ x) P(X ≤ x + 0.5)

P(X < x) P(X ≤ x − 0.5)

P(X > x) P(X ≥ x + 0.5)

P(X ≥ x) P(X ≥ x − 0.5)

Tip: Don’t memorize - just sketch the histogram and think logically!
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Distributions That Converge to Normal

Many important probability distributions become approximately
normal under the right conditions (typically as sample size or degrees
of freedom increase).

Examples:

Binomial: Normal approximation valid as n → ∞.

Hypergeometric: As n → ∞ for small n relative to N.

Poisson: For large λ, the distribution becomes approximately normal.

Chi-Square (χ2): Becomes more symmetric and bell-shaped as
degrees of freedom increase.

t-distribution: Approaches standard normal as degrees of freedom
increase.

Takeaway: The normal distribution plays a central role in inference
because many statistics follow a normal distribution in large samples.
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Point Estimation

Statistics are used to estimate population parameters.

A point estimate is a single value used to estimate a target
parameter.

x is a point estimate for µ, p̂ is a point estimate for p

Bias of a Point Estimator

We say θ̂ is an unbiased estimator of the parameter θ if:

E (θ̂) = θ

The bias of an estimator is defined as:

B(θ̂) = E (θ̂)− θ

We also care about the variance and distribution of estimators.
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What is a Sampling Distribution?

A sampling distribution is the distribution of a statistic over all
possible samples.

Imagine repeating a random sample process infinitely many times and
recording a statistic each time.

The distribution of all these sample statistics forms the sampling
distribution.

Why It Matters

Sampling distributions are essential for statistical inference. They allow us
to:

Understand variability in estimates

Construct confidence intervals (Unit 6-9)

Perform hypothesis testing (Unit 6-9)
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Sampling Distribution for p̂

Take a random sample of size n from a population of size N.

Let X be the number of sample elements with a certain characteristic.

p̂ =
X

n

The population has r total successes, so:

p =
r

N

X ∼ Hypergeometric(r , n,N)
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Expected Value of p̂ (Hypergeometric)

Prove p̂ is an unbiased estimator for p:

E (p̂) = E

(
X

n

)
=

1

n
E (X )

=
1

n
· n
( r

N

)
=

r

N
= p

p̂ is an unbiased estimator of p.

The sampling distribution of p̂ is centered at the true population
proportion.
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Variance of p̂ (Hypergeometric)

Determine the variance of the statistics p̂:

Var(p̂) = Var

(
X

n

)
=

1

n2
· n · r

N

(
1− r

N

)(N − n

N − 1

)
=

p(1− p)

n
·
(
N − n

N − 1

)

SD(p̂) =

√
p(1− p)

n
·
(
N − n

N − 1

)
This is most appropriate for small, finite populations.

We DON’T use this for AP statistics (why not)?
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When Can We Use the Binomial Approximation?

We approximate X ∼ Binomial(n, p), which is valid when:

Independence Condition

Sample size n is less than 10% of the population: n < 0.1N

Assuming X ∼ Binomial(n, p), we get:

E (p̂) = p, Var(p̂) =
p(1− p)

n
, SD(p̂) =

√
p(1− p)

n

1 Why is X ∼ Binomial(n, p) when n < 10%N?

2 Prove the expected value for p̂ and variance for p̂ using the binomial
approximation.
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Normal Approximation to the Sampling Distribution of p̂

Even with the binomial model, exact computations can be complex.

So we use a normal approximation for p̂, if the following condition is
met:

Normality Condition

np > 10 and n(1− p) > 10

(At least 10 expected successes and failures)

p̂ − p√
p(1− p)

n

∼ N(0, 1)

Merrick Fanning Unit 5: Sampling Distributions July 25, 2025 17 / 44



Conditions for Using the Normal Sampling Distribution of p̂

To use the normal model for p̂, the following must be true:

Random Sampling: Sample is collected randomly.

Independence: Population is at least 10 times larger than the
sample (n < 0.1N).

Normality: np > 10 and n(1− p) > 10

These are assumptions - they are not always verifiable but are necessary to
use this model.
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Example: Sampling Distribution for p̂

It is known that across North America, 65% of university students take longer than four years to
complete their undergraduate degree. You survey 100 University of Calgary graduates.

(a) Distribution for X :
Since n = 100 < 0.1N, we approximate using a binomial model:

X ∼ Binomial(n = 100, p = 0.65)

(b) Sampling distribution for p̂:

Conditions:

Independence: n = 100 < 0.1N ✓
Normality: np = 65 > 10, n(1− p) = 35 > 10 ✓

p̂ ∼ Normal

(
0.65,

0.65(0.35)

100

)
(c) Probability that p̂ > 0.70:

z =
0.70− 0.65√

0.65·0.35
100

= 1.048

P(p̂ > 0.70) = P(Z > 1.048) ≈ 0.147

There is about a 15% chance that more than 70% of your sample took over four years to
graduate.
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The Sampling Distribution of x

Suppose X1,X2, . . . ,Xn are independent and identically distributed random
variables.

x =
X1 + X2 + · · ·+ Xn

n

Assume each Xi ∼ Normal(µ, σ2). Then:

E (x) = µ (Unbiased)

Var(x) =
σ2

n
, SD(x) =

σ√
n

So:

x ∼ Normal

(
µ,

σ2

n

)
Independence condition: n < 10% of the population

Merrick Fanning Unit 5: Sampling Distributions July 25, 2025 20 / 44



Standardizing the Sampling Distribution

We often standardize x using:

Z =
x − µ
σ√
n

Where:

Z ∼ Normal(0, 1)

Requires known σ

Assumes random sampling and independence

If σ is unknown, we will require a new distribution - this will be covered
later.
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Example: Pale-Throated Sloths (Setup)

The weights of pale-throated sloths are normally distributed:

µ = 4.5 kg, σ = 1.1 kg

You randomly sample 20 sloths.

(a) Describe the sampling distribution of x :

Since n = 20 < 0.1N, and the parent distribution is normal:

x ∼ Normal

(
4.5,

(1.1)2

20

)
(b) What is the probability the sample mean is between 2.3 kg and 4.3 kg?

zlow =
2.3− 4.5

1.1√
20

= −8.94, zhigh =
4.3− 4.5

1.1√
20

= −0.81

P(2.3 ≤ x ≤ 4.3) = P(−8.9 ≤ Z ≤ −0.8) ≈ 0.2119

There is approximately a 21.2% chance the sample mean falls in this range.
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The Central Limit Theorem (CLT)

Question: What happens when the parent distribution is not normal?

The Central Limit Theorem

Let X1,X2, . . . ,Xn be i.i.d. random variables with

E (Xi ) = µ, Var(Xi ) = σ2

Then:

X =
X1 + X2 + · · ·+ Xn

n
n→∞−−−→ Normal

(
µ,

σ2

n

)
That is, the sampling distribution of X becomes normal as n increases -
regardless of the parent distribution.

X − µ
σ√
n

∼ Z for n ≥ 30

Merrick Fanning Unit 5: Sampling Distributions July 25, 2025 23 / 44



Example: 10-Sided Die

Let X represent the outcome of a 10-sided die roll. The parent distribution
is uniform.

Even though this parent distribution is not normal, the CLT applies as n
increases.

Merrick Fanning Unit 5: Sampling Distributions July 25, 2025 24 / 44



Sampling Distributions of X

Below are sampling distributions from 10,000 samples for sample sizes of
2, 10, and 30:

Sample size = 2 Sample size = 10 Sample size = 30

As the sample size increases, the sampling distribution of X becomes more
normal regardless of the parent population.
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Example: Carnival Game - Profit Distribution

A carnival game has the following profit distribution:

Profit ($) -1 1 5 20

Probability 0.95 0.03 0.02 0.01

Let X be your profit from a single play.

(a) Determine expected value for X :

E (X ) = −1(0.95) + 1(0.03) + 5(0.02) + 20(0.01) = −0.62

(b) Determine variance for X :

E (X 2) = 1(0.95) + 1(0.03) + 25(0.02) + 400(0.01) = 5.48

Var(X ) = E (X 2)− (E (X ))2 = 5.48− (−0.62)2 = 5.4556

Merrick Fanning Unit 5: Sampling Distributions July 25, 2025 26 / 44



Example: Carnival Game - Profit Distribution

A carnival game has the following profit distribution:

Profit ($) -1 1 5 20

Probability 0.95 0.03 0.02 0.01

Let X be your profit from a single play.

(a) Determine expected value for X :

E (X ) = −1(0.95) + 1(0.03) + 5(0.02) + 20(0.01) = −0.62

(b) Determine variance for X :

E (X 2) = 1(0.95) + 1(0.03) + 25(0.02) + 400(0.01) = 5.48

Var(X ) = E (X 2)− (E (X ))2 = 5.48− (−0.62)2 = 5.4556

Merrick Fanning Unit 5: Sampling Distributions July 25, 2025 26 / 44



Example: Carnival Game - Profit Distribution

A carnival game has the following profit distribution:

Profit ($) -1 1 5 20

Probability 0.95 0.03 0.02 0.01

Let X be your profit from a single play.

(a) Determine expected value for X :

E (X ) = −1(0.95) + 1(0.03) + 5(0.02) + 20(0.01) = −0.62

(b) Determine variance for X :

E (X 2) = 1(0.95) + 1(0.03) + 25(0.02) + 400(0.01) = 5.48

Var(X ) = E (X 2)− (E (X ))2 = 5.48− (−0.62)2 = 5.4556

Merrick Fanning Unit 5: Sampling Distributions July 25, 2025 26 / 44



Carnival Game: CLT Approximation

Suppose you play the game 30 times (n = 30).

CLT applies: large sample size.

Then:

µx = −0.62, σx =

√
5.4556

30
= 0.4264

x ∼ Normal(−0.62, 0.4264)

1 What is the probability that your profit is positive after playing the 30
games?

P(x > 0) = P

(
x − µ

σ√
n

>
0− (−0.62)

0.4264426√
30

)
= P(Z > 7.963275)

= 1− P(Z ≤ 7.963275)

≈ 0
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Assumptions for Using a Normal Model

To use the normal model for x , we must assume:

Normality: Either the parent population is normal or n ≥ 30

Independence: Sample size n < 10% of population size N

Random Sampling: Sample is collected using a random method

x ∼ Normal

(
µ,

σ2

n

)
Similar to assumptions for the sampling distribution of p̂
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A Sampling Distribution Involving s2

Suppose X1,X2, . . . ,Xn is a random sample from a normal population with mean
µ and variance σ2.
Then the following distribution holds:

(n − 1)s2

σ2
∼ χ2

n−1

Example: Pale-Throated Sloths

The weights of sloths are normally distributed with µ = 4.5 kg, σ = 1.1 kg. A
random sample of n = 20 sloths is taken. What is the probability that the sample
standard deviation is at least 0.9?

P(s2 > 0.92) = P

(
χ2
19 >

(0.9)2 · 19
(1.1)2

)
= P

(
χ2
19 > 12.72

)
= 0.8526

Conclusion: There’s an 85% chance of observing a sample standard deviation of
0.9 or greater.
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Standard Deviation vs. Standard Error

Problem: Many sampling distributions involve unknown population parameters.

For the sampling distribution of the sample mean:

σx =
σ√
n

But the population standard deviation σ is usually unknown.

We estimate it using the sample standard deviation s.

Standard Error
The standard error is the estimated standard deviation of a statistic:

SEx =
s√
n

What happens to the distribution?

x − µ
σ√
n

∼ Z (when σ is known)
x − µ
s√
n

∼ ??? (new distribution)
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Using the t-Distribution

Consider a standard normal random variable Z , and a chi-square random variable with k degrees
of freedom. The t-distribution is defined as:

t =
Z√
χ2
k

k

Recall the following known distributions (when assumptions are met):

X − µ
σ
√
n

∼ Z ,
(n − 1)s2

σ2
∼ χ2

n−1

Using these, we construct the t-statistic:

X − µ
σ
√
n


√√√√√

(
(n − 1)s2

σ2

)
n − 1

=
X − µ

s
√
n

∼ tn−1
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Assumptions for Using the t-Distribution

To use the t-distribution, the following assumptions must hold:

Simple Random Sampling

Independence: n < 0.1N

Normality:
Ideally, the population is normal with mean µ, variance σ2. Then:

X − µ

σ/
√
n

∼ Z ,
(n − 1)s2

σ2
∼ χ2

n−1

If the parent population is unknown:

If n ≥ 30, the CLT allows:

X − µ

s/
√
n

∼ tn−1

If n < 30, we require the population to be approximately normal
(unimodal, symmetric, no outliers).

Caution: Small, skewed, or heavy-tailed samples may make the
t-distribution inappropriate.
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Case I: Normal Parent Distribution, Large Sample
(n = 100)

Assume X1,X2, . . . ,X100 ∼ Normal(10, 2) Histograms below show the sampling
distributions (100,000 simulations), with theoretical curves superimposed.

x − µ

σ/
√
n

∼ Z
(n − 1)s2

σ2
∼ χ2

99

x − µ

s/
√
n

∼ t99

Conclusion: With a large sample size and normal parent population, the
theoretical distributions are a very good fit.
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Case II: Normal Parent Distribution, Small Sample
(n = 10)

Assume X1,X2, . . . ,X10 ∼ Normal(10, 2). Again, histograms show empirical
sampling distributions with theoretical curves.

x − µ

σ/
√
n

∼ Z
(n − 1)s2

σ2
∼ χ2

9

x − µ

s/
√
n

∼ t9

Conclusion: Even with a small sample, normality in the parent distribution
ensures that the t-distribution is appropriate.
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Case III: Skewed Parent Distribution, Small Sample
(n = 10)

Assume X1,X2, . . . ,X10 ∼ Exponential(3), a highly right skew distribution.

x − µ

σ/
√
n

∼ ?
(n − 1)s2

σ2
∼ ?

x − µ

s/
√
n

∼ ?

Conclusion: With a skewed parent distribution and small n, the theoretical
distributions do not fit. Use caution when applying the t-distribution in this
scenario.
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Example: Pokémon Attack Scores

A random sample of n = 801 Pokémon has:

x = 78, s = 32

Suppose the true population mean is µ = 70. The sample distribution is shown
below:

(a) What is the probability that a future sample has a mean attack score less
than 70?
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Example: Pokémon Attack Scores Solution

Solution: Large n and approximately normal data → use the
t-distribution.

P(x < 70) = P

(
x − µ

s/
√
n
<

70− 78

32/
√
801

)
= P(t800 < −2.6533) = 0.0041

Conclusion: There’s about a 0.41% chance that a random sample of 801
Pokémon would have a mean attack below 70.

Merrick Fanning Unit 5: Sampling Distributions July 25, 2025 37 / 44



Summary of Sampling Distributions

Let’s summarize the sampling distributions we’ve developed so far:

Distribution Assumptions

p̂ ∼ Normal

(
p,

p(1− p)

n

)
Random sampling, independence, and nor-
mality condition: np > 10, n(1− p) > 10

p̂ − p√
p(1− p)

n

∼ Z Same as above (standardized version)

x ∼ Normal

(
µ,

σ2

n

)
Random sampling, independence (n <
0.1N), and normal population or large n ≥
30

x − µ
σ√
n

∼ Z When σ is known, with same assumptions as
above

x − µ
s√
n

∼ tn−1 When σ is unknown. Requires normality or
large sample, plus random sampling and in-
dependence
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Sampling Distribution of a Difference in Proportions

We often compare two sample proportions:

p̂1: the sample proportion from a group of size n1

p̂2: the sample proportion from a second group of size n2

Our goal: Understand the behavior of the statistic p̂1 − p̂2. Assumptions:

Random Sampling: Each sample is drawn using a random method.

Independence: Observations are independent within and between samples.
Assume this if:

n1 < 0.1N1 and n2 < 0.1N2

Normality: Each sample must have at least 10 successes and 10 failures:

n1p1 > 10, n1(1− p1) > 10, n2p2 > 10, n2(1− p2) > 10

What is E (p̂1 − p̂2)?

What is Var(p̂1 − p̂2)?

What distribution does p̂1 − p̂2 follow?
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Example: Difference in Proportions - Two Towns

In one town, 51% of voters are conservative; in another, 44% are conservative. A
random sample of 100 voters is taken from each town.

(a) Is a normal model appropriate for p̂1 − p̂2?

Simple Random Sample: Assumed for both towns.
Independence: n1 = n2 = 100 < 0.1N so we assume independence.
Normality:

n1p1 = 51, n1(1− p1) = 49

n2p2 = 44, n2(1− p2) = 56

(b) What is the probability that p̂1 < p̂2?

P(p̂1 − p̂2 < 0) = P

Z <
0− (0.51− 0.44)√

0.51(0.49)

100
+

0.44(0.56)

100


= P(Z < −0.994) = 0.1602

Conclusion: There is about a 16% chance the first sample yields a lower
proportion than the second.
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Sampling Distribution for a Difference in Sample Means

Suppose we take two independent random samples:

x1 is the mean of a sample of size n1, from a population with mean µ1 and
standard deviation σ1

x2 is the mean of a sample of size n2, from a population with mean µ2 and
standard deviation σ2

We are interested in the statistic x1 − x2
Assumptions:

Random Sampling: Each sample is randomly drawn

Independence: Each sample satisfies n1 < 0.1N1, n2 < 0.1N2

Normality: Either:

Both populations are approximately normal
OR sample sizes are large: n1 ≥ 30 and n2 ≥ 30

What is E (x1 − x2)?

What is Var(x1 − x2)?

What is the sampling distribution of x1 − x2?
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Difference in Sample Means (Unknown Variances)

When population standard deviations σ1 and σ2 are unknown, we use the sample
standard deviations s1 and s2 to estimate them.
Sampling Distribution:

(x1 − x2)− (µ1 − µ2)√
s21
n1

+
s22
n2

∼ tdf

Degrees of Freedom (df):

min(n1 − 1, n2 − 1) ≤ df ≤ n1 + n2 − 2

Which degree of freedom would be the most conservative?
Conditions:

Random Sampling: Both samples are independently and randomly drawn.

Independence: n1 < 10% of N1, n2 < 10% of N2

Normality: Each sample is from a normal population or both n1, n2 ≥ 30
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Welch-Satterthwaite Approximation

When population variances are unknown and unequal, we estimate the
degrees of freedom using the Welch-Satterthwaite formula:

df =

(
s21
n1

+
s22
n2

)2

(
s21
n1

)2

n1 − 1
+

(
s22
n2

)2

n2 − 1

Use in:
(x1 − x2)− (µ1 − µ2)√

s21
n1

+
s22
n2

∼ tdf

Note: This formula often gives a non-integer df ; statistical software
typically handles this automatically.
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Sampling Distribution with Pooled Variance (Enrichment)

Suppose we take two independent random samples from two populations, and we
assume that the population variances are equal:

σ2
1 = σ2

2 = σ2

We estimate the common variance using the pooled sample variance:

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

If all assumptions are satisfied, then the sampling distribution of the difference in
sample means is:

(x1 − x2)− (µ1 − µ2)

sp
√

1
n1

+ 1
n2

∼ tn1+n2−2

Assumptions:

Random sampling

Independence: n1 < 10%N1, n2 < 10%N2

Normal populations or large sample sizes

Equal population variances
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