AP STATISTICS UNIT 5 – QUICK NOTES

1. Sampling Distributions Basics

Statistic: A number from a sample (e.g., \bar{x} , \hat{p} , $\bar{x}_1 - \bar{x}_2$, $\hat{p}_1 - \hat{p}_2$). **Parameter:** A number describing the population (e.g., μ , p, $\mu_1 - \mu_2$, $p_1 - p_2$).

Sampling distribution: The distribution of a statistic over many samples from the same population(s).

Unbiased Estimators:

$$E[\bar{x}] = \mu, \quad E[\hat{p}] = p$$

$$E[\bar{x}_1 - \bar{x}_2] = \mu_1 - \mu_2, \quad E[\hat{p}_1 - \hat{p}_2] = p_1 - p_2$$

2. Mean (Center) of the Sampling Distribution

$$\mu_{\bar{x}} = \mu, \quad \mu_{\hat{p}} = p$$

$$\mu_{\bar{x}_1 - \bar{x}_2} = \mu_1 - \mu_2, \quad \mu_{\hat{p}_1 - \hat{p}_2} = p_1 - p_2$$

3. Standard Deviation (Spread)

Single-sample:

$$\sigma_{ar{x}} = rac{\sigma}{\sqrt{n}}, \quad \sigma_{\hat{p}} = \sqrt{rac{p(1-p)}{n}}$$

Two-sample:

$$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

$$\sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

Effect of n: Larger $n \Rightarrow$ smaller spread.

4. Shape and Normality Conditions

For Means (\bar{x}) :

• Random sample

• Independence: $n \leq 0.1N$ if without replacement

• Normality: population normal (any n) OR $n \ge 30$ (CLT)

For Proportions (\hat{p}) :

• Random sample

• Independence: n < 0.1N

• Success-failure: $np \ge 10$ and $n(1-p) \ge 10$

For Difference of Means $(\bar{x}_1 - \bar{x}_2)$:

• Random samples from each population

• Independence: within and between samples $(n_1 \le 0.1N_1, n_2 \le 0.1N_2)$

 Normality: both populations normal (any n) OR both $n \ge 30$

For Difference of Proportions $(\hat{p}_1 - \hat{p}_2)$:

• Random samples from each population

• Independence: within and between samples $(n_1 \le 0.1N_1, n_2 \le 0.1N_2)$

• Success-failure:

$$- n_1 p_1 \ge 10, n_1 (1 - p_1) \ge 10$$

$$-n_2p_2 \ge 10, n_2(1-p_2) \ge 10$$

5. Central Limit Theorem (CLT)

If n is large enough, the sampling distribution of \bar{x} is approximately normal regardless of population shape. Same logic applies to $\bar{x}_1 - \bar{x}_2$ if both n_1 and n_2 are large enough.

6. z-Score Formulas

Single-sample:

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}, \quad z = \frac{\hat{p} - p}{\sqrt{p(1 - p)/n}}$$

Two-sample:

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
$$z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

7. Interpretation Tips

- ullet Large n reduces spread, making differences easier to detect.
- Always check all normality conditions before using z.
- ullet In two-sample cases, verify independence between samples.

8. Common Pitfalls

- Confusing population distribution with sampling distribution.
- $\bullet\,$ Forgetting success–failure checks for proportions.
- Using single-sample formulas for difference problems.