AP STATISTICS UNIT 6 – QUICK NOTES

1. Overview

Goal: Estimate or test a population proportion (p) or a difference in proportions $(p_1 - p_2)$ using sample data.

Types:

ullet One-sample z-interval or z-test for p

• Two-sample z-interval or z-test for $p_1 - p_2$

2. Conditions

One-sample:

• Random sample / random assignment

• Independence: $n \leq 0.1N$

• Normality: Success–Failure $(np \ge 10, n(1-p) \ge 10 \text{ for tests};$ use \hat{p} in intervals)

Two-sample:

• Random samples or random assignment for each group

• Independence: within and between groups $(n_1 \leq 0.1N_1, n_2 \leq 0.1N_2)$

• Normality: $n_1p_1 \ge 10$, $n_1(1-p_1) \ge 10$ $n_2p_2 \ge 10$, $n_2(1-p_2) \ge 10$

3. One-Sample z-Interval

$$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Interpret: "We are C% confident that the interval from [] to [] captures the true proportion of [context]."

4. One-Sample z-Test

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

p-value = probability (from normal curve) of observing a result as extreme or more extreme in the direction of H_a .

5. Two-Sample z-Interval

$$(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

Interpret: "We are C% confident that the interval from [] to [] captures the true difference in proportions of [context]."

6. Two-Sample Z-Test

Pooled proportion:

$$\hat{p}_c = \frac{x_1 + x_2}{n_1 + n_2}$$

Test statistic:

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}_c(1 - \hat{p}_c)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

7. Steps for Inference

State: Define parameter, state H_0 and H_a (test) or confidence level (interval).

Plan: Choose procedure, check conditions.

Do: Calculate statistic, df, and CI or p-value.

Conclude: Interpret in context.

8. Errors and Power

• Type I error: reject H_0 when H_0 is true (α)

• Type II error: fail to reject H_0 when H_a is true (β)

• Power: $1 - \beta$, probability of correctly rejecting H_0

9. Common Pitfalls

• Using \hat{p} instead of p_0 in test standard error

• Forgetting to pool in two-sample tests

• Not stating conclusions in context

• Forgetting to check conditions