AP Statistics - Unit 7 Review: Inference for Means

1. Overview

Goal: Estimate or test a population mean (μ) or a difference in means $(\mu_1 - \mu_2)$ using sample data.

Types:

- One-sample z/t-interval or z/t-test for μ
- Two-sample t-interval or t-test for $\mu_1 \mu_2$
- Paired t-interval or t-test for μ_d (mean of differences)

2. When to Use $n \leq 0.1N$ Rule

The independence condition is checked when sampling without replacement from a finite population. If $n \leq 0.1N$, treat observations as independent. If data come from random assignment to treatments, independence is built in and the 10% rule is not needed.

3. Conditions

One-sample:

- Random sample / random assignment
- Independence: n < 0.1N (if no replacement)
- Normality: Population normal OR $n \ge 30$ (CLT) OR sample roughly symmetric/no outliers

Two-sample:

- Random samples / random assignment for each group
- Independence: within and between groups $(n_1 \le 0.1N_1, n_2 \le 0.1N_2 \text{ if no replacement})$
- Normality: Both populations normal OR both $n \ge 30$ OR both samples roughly symmetric/no outliers

Paired:

- Random sample / random assignment of pairs
- Independence: Pairs independent of each other
- Normality: $n_{\text{pairs}} \geq 30 \text{ OR roughly symmetric/no outliers}$

4. One-Sample Procedures

If σ known: z-test / z-interval. If σ unknown: t-test / t-interval.

CI:
$$\bar{x} \pm t^* \frac{s}{\sqrt{n}}$$

Test:
$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

df = n - 1.

5. Two-Sample Procedures

Always use t-distribution (unknown σ 's).

CI:
$$(\bar{x}_1 - \bar{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Test:
$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

df from software or conservative $\min(n_1 - 1, n_2 - 1)$.

6. Paired Procedures

Work with differences $d = X_1 - X_2$:

CI:
$$\bar{d} \pm t^* \frac{s_d}{\sqrt{n_{\text{pairs}}}}$$

Test:
$$t = \frac{\bar{d} - \mu_{d,0}}{s_d / \sqrt{n_{\text{pairs}}}}$$

 $df = n_{\text{pairs}} - 1.$

7. Steps for Inference

State: Define parameter, state H_0 and H_a (test) or confidence level (interval).

Plan: Choose procedure, check conditions.

Do: Calculate statistic, df, and CI or p-value.

Conclude: Interpret in context.

8. Common Pitfalls

- \bullet Forgetting 10% condition when sampling without replacement
- Using s when σ is known or vice versa
- Treating paired data as two-sample
- Not checking normality for small n

Unit 7: Procedures, Formulas, Conditions, TI-84 Steps

Procedure	Formula	Conditions	TI-84 Steps
1-sample z Test	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	SRS, independent observations, σ known, normal population or large n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1-sample z Interval	$\bar{x} \pm z^* \frac{\sigma}{\sqrt{n}}$	Same as above	$\mathtt{STAT} \to \mathtt{TESTS} \to \mathtt{Z-Interval}$
1-sample t Test	$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}, \ df = n - 1$	SRS, independent observations, σ unknown, normal population or large n	$\mathtt{STAT} \to \mathtt{TESTS} \to \mathtt{T-Test}$
1-sample t Interval	$\bar{x} \pm t_{n-1}^* \frac{s}{\sqrt{n}}$	Same as above	$\mathtt{STAT} \to \mathtt{TESTS} \to \mathtt{TInterval}$
2-sample t Test	$t = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	Two SRSs or random assignment, independent groups, each sample $\leq 10\%$ of population, normal populations or large n	$\begin{array}{ccc} \mathtt{STAT} & \to & \mathtt{TESTS} & \to \\ \mathtt{2-SampTTest}, \ choose \ \mathtt{Stats} \ or \\ \mathtt{Data}, \ \mathtt{Pooled:} & \ \mathtt{No} \end{array}$
2-sample t Interval	$(\bar{x}_1 - \bar{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	Same as above	$\begin{array}{l} \mathtt{STAT} \to \mathtt{TESTS} \to \mathtt{2-SampTInt}, \\ \mathtt{Pooled:} \mathtt{No} \end{array}$
Paired t Test	$t = \frac{\bar{d} - \mu_{d,0}}{s_d / \sqrt{n}}, \ df = n - 1$	Paired design (matched pairs or before/after), analyze differences, differences nearly normal or large n	·
Paired t Interval	$\bar{d} \pm t_{n-1}^* \frac{s_d}{\sqrt{n}}$	Same as above	Enter differences in L1, then ${\tt STAT} \to {\tt TESTS} \to {\tt TInterval}$ using L1