## Unit 8: Chi-Square Inference

Merrick Fanning

August 8, 2025

## Unit 8 Outline: Inference Using the Chi-Square Distribution

- The Chi-Square Distribution
- Chi-Square Goodness of Fit Test
  - Mendelian Genetics
  - Teddy Grahams
- Ohi-Square Test of Homogeneity
- Ohi-Square Test of Independence

## The $\chi^2$ Distribution

**Definition:**  $\chi_k^2$  denotes a  $\chi^2$  distribution with k degrees of freedom.

- Mean: E(X) = k
- Variance: Var(X) = 2k
- The shape is **right-skewed**, especially for small *k*
- Becomes more symmetric (normal) as k increases
- A standard normal variable squared follows a  $\chi^2$  distribution with 1 degree of freedom: If  $Z \sim N(0,1)$ , then  $Z^2 \sim \chi_1^2$ .
- The sum of independent  $\chi^2$  variables has degrees of freedom equal to the sum of their degrees of freedom:

$$X_i \sim \chi^2_{k_i} \quad \Rightarrow \quad \sum X_i \sim \chi^2_{\sum k_i}$$

Like with the normal distribution, we compute probabilities using technology, tables, or calculators.



## Chi-Square Testing in Genetics

- Living organisms inherit **traits** from their parents.
- Traits are determined by genes, which are segments of DNA.
- Different versions of a gene are called alleles.
- When two parents pass down alleles, they form a **genotype**, which determines the observable **phenotype**.
- Gene: A segment of DNA that encodes a trait (e.g., eye color).
- Allele: A specific version of a gene (e.g., blue or brown).
- **Genotype:** The combination of two alleles inherited from parents.
- **Phenotype:** The observable trait expressed by the genotype.

## Punnet Squares: Monohybrid, Dihybrid, and Heterozygotes

- Monohybrid Cross: One gene, two alleles.
  - Example:  $Pp \times Pp$  (P = purple, p = white)

Genotypes: 1 PP, 2 Pp, 1 pp  $\Rightarrow$  Phenotypes: 3 purple: 1 white

- **Dihybrid Cross:** Two genes, each with two alleles.
  - Example:  $PpTt \times PpTt$  (P = purple, p = white, T = tall, t = short)

|    | PT   | Pt   | рТ   | pt   |
|----|------|------|------|------|
| PT | PPTT | PPTt | PpTT | PpTt |
| Pt | PPTt | PPtt | PpTt | Pptt |
| рΤ | PpTT | PpTt | ppTT | ppTt |
| pt | PpTt | Pptt | ppTt | pptt |

Phenotypes: 9 purple-tall: 3 purple-short: 3 white-tall: 1 white-short

## History: Mendel and the Chi-Square Test

- Gregor Mendel (1822–1884) Austrian monk and scientist.
  - Conducted experiments on pea plants.
  - Discovered predictable inheritance patterns.
  - Famous ratios: 3:1 (monohybrid), 9:3:3:1 (dihybrid).
- Karl Pearson (1857–1936) English mathematician and statistician.
  - Developed the **chi-square test** in 1900.
  - Purpose: Compare observed data to an expected theoretical model.
- Mendel did **not** use the chi-square test it was applied to his data later to verify his results.

## Mendel's Pea Plant Data: Seed Shape

Monohybrid cross: Round (R) vs Wrinkled (r) seeds

- Cross:  $Rr \times Rr$
- Expected phenotype ratio: 3 round: 1 wrinkled

#### Mendel's observed counts:

| Phenotype | Observed (O) | Expected $(E)$                   |
|-----------|--------------|----------------------------------|
| Round     | 5474         | $7324 \times \frac{3}{4} = 5493$ |
| Wrinkled  | 1850         | $7324 	imes rac{1}{4} = 1831$   |

#### Chi-square calculation:

$$\chi^2 = \frac{(5474 - 5493)^2}{5493} + \frac{(1850 - 1831)^2}{1831}$$
$$\chi^2 \approx 0.066 + 0.197 = 0.263$$

**Conclusion:** With df = 1,  $\chi^2 = 0.263$  is far below 3.841, so the data is **consistent** with the 3:1 ratio.

## Conditions for the Chi-Square Goodness-of-Fit Test

#### 1. Random Sampling

- Data should come from a random sample or a randomized experiment.
- Ensures results can be generalized to the population.

#### • 2. All Expected Counts $\geq 5$

- Expected count in each category should be at least 5.
- Prevents large sampling variability that would make the  $\chi^2$  approximation inaccurate.

#### • 3. Independent Observations

- Each individual belongs to exactly one category.
- One observation does not influence another.
- For sampling without replacement, population size should be at least 10 times the sample size.

#### Why These Matter

Meeting these conditions ensures that the **sampling distribution of**  $\chi^2$  follows the chi-square model closely, making *p*-values and conclusions reliable.

## Example: Teddy Grahams and Arm Positions

Imagine you open a box of Teddy Grahams and notice some bears have **arms up** while others have **arms down**.

According to the manufacturer, these two arm positions occur in a 1:1 ratio.

To test this claim, you:

- Randomly select n = 100 Teddy Grahams from the box.
- Count:
  - Arms up: 54
  - Arms down: 46

**Question:** Is there evidence, at the  $\alpha=0.05$  level, that the arm positions are *not* in a 1:1 ratio?

## 1) State the Problem & Information

We want to test the manufacturer's claim that Teddy Graham arm positions occur in a 1:1 ratio.

- Sample size: n = 100
- Observed counts: Arms up = 54, Arms down = 46
- Significance level:  $\alpha = 0.05$

### **Hypotheses (Goodness-of-Fit):**

 $H_0$ : The distribution is as claimed (1:1 ratio)  $\iff$   $p_{\sf up} = p_{\sf down} = 0.5$ 

 $H_a$ : The distribution is not 1:1 ( $H_0$  false)

**Question:** Is there evidence, at  $\alpha = 0.05$ , that the arm-position distribution differs from 1:1?

## 2) Check Conditions

- Random sampling: Cookies selected at random from the box. ✓
- Expected counts (under 1:1):

$$E_{up} = 100 \cdot \frac{1}{2} = 50, \quad E_{down} = 100 \cdot \frac{1}{2} = 50 \ (\geq 5) \ \checkmark$$

• Independence: The sample of cookies is clearly less than 10% of the population of all cookies  $\checkmark$ 

## 3) Compute Test Statistic and p-Value

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$
Category  $O$   $E$   $(O-E)^2/E$ 

Arms up  $54$   $50$   $\frac{(4)^2}{50} = 0.32$ 

Arms down  $46$   $50$   $\frac{(-4)^2}{50} = 0.32$ 

Total  $\chi^2$   $0.32 + 0.32 = \mathbf{0.64}$ 

Degrees of freedom: df = k - 1 = 2 - 1 = 1.

**p-value:**  $P(\chi^2_{(1)} \ge 0.64) \approx 0.424$ .

## 4) Conclusion (with Interpretation)

Since  $p = 0.424 > \alpha = 0.05$ , we fail to reject  $H_0$ .

**Interpretation:** Assuming the true distribution of Teddy Graham arm positions is 1:1, there is about a **42.4**% chance of observing a chi-square test statistic *as large as or larger* than the one we found in this sample, purely by random chance in future samples.

This is not strong (condemning) evidence against  $H_0$ , so the sample data are consistent with the manufacturer's 1:1 claim.

## University Application: Fruit Fly Genetics

In many introductory biology labs, students test Mendelian inheritance using *Drosophila melanogaster* (fruit flies).

#### **Typical procedure:**

- Select parent flies with known traits (e.g., red-eyed female × white-eyed male).
- Set up a mating vial with a small group of flies and nutrient medium.
- Allow mating and egg-laying, then remove parents to avoid confusion.
- **4** Wait  $\sim$ 10 days for eggs  $\rightarrow$  larvae  $\rightarrow$  pupae  $\rightarrow$  adult flies.
- Count offspring phenotypes under a microscope (e.g., red eyes vs white eyes, normal wings vs vestigial wings).
- Compare observed counts to Mendelian ratios (e.g., 3:1 or 9:3:3:1) using a chi-square goodness-of-fit test.

## Recap: The "Redshirt" Myth

- In Star Trek fandom, there's a long-running joke:
  "If you beam down to a planet wearing a red shirt, you probably won't make it back."
- The idea comes from many episodes where security and engineering crew (red shirts) meet unfortunate ends on away missions.
- But is it **really** true in the original series? Or just selective memory?
- Using crew roster and status data from the original series (1966–1969), we can test if survival independent of shirt color?



## Chi-Square Test of Independence: Star Trek Crew Survival

**Question:** Is **shirt color** independent of **status** (alive/dead) among Enterprise crew members?

**Source:** Matthew Barsalou, "Keep Your Redshirt On: A Bayesian Exploration," *Significance Magazine*. Data compiled from **Memory Alpha** (fan-curated Star Trek wiki). Article link

|        | Alive | Dead | Total |
|--------|-------|------|-------|
| Blue   | 129   | 7    | 136   |
| Yellow | 46    | 9    | 55    |
| Red    | 215   | 24   | 239   |
| Total  | 390   | 40   | 430   |

## Step 1: Hypotheses & Important Information

**Null hypothesis** ( $H_0$ ): Shirt color and crew status are **independent** (no association).

**Alternative hypothesis** ( $H_A$ ): Shirt color and crew status are **not independent** (associated).

**Test:** Chi-square test of independence on a  $3 \times 2$  table.

**Significance level:**  $\alpha = 0.05$ .

## Step 2: Check Conditions

- Randomness: Assume the Enterprise crew is a random sample from all Starfleet personnel.
- 10% Condition:  $n = 430 < 0.10 \times N_{\text{Starfleet}}$ , so sampling without replacement is fine.
- **Expected Counts:** All  $E_{ij} \geq 5$  (verified on next slide).

## Step 3: Expected Counts & Test Statistic

**Expected counts:**  $E_{ij} = \frac{(\text{row total})(\text{col total})}{\text{grand total}}$ Example:  $E_{\text{Blue, Alive}} = \frac{136 \times 390}{430} \approx 123.3$   $E_{\text{Blue, Dead}} = 136 - 123.3 = 12.7$ 

|        | Alive (E) | Dead (E) |
|--------|-----------|----------|
| Blue   | 123.3     | 12.7     |
| Yellow | 49.9      | 5.1      |
| Red    | 216.8     | 22.2     |

$$\chi^2 - \text{stat} \approx \frac{(129 - 123.3)^2}{123.3} + \frac{(7 - 12.7)^2}{12.7} + \dots + \frac{(24 - 22.2)^2}{22.2} \approx 6.61$$

Degrees of freedom: (3-1)(2-1)=2,  $P(\chi^2_{(2)} \ge 6.61) \approx 0.037$ .

## Step 4: Conclusion (with Interpretation)

Since  $p \approx 0.037 < \alpha = 0.05$ , we **reject**  $H_0$ .

**Interpretation (AP style):** Assuming shirt color and crew status are truly independent, there is about a **3.7%** chance of observing a chi-square statistic as large as or larger than 6.61 purely by random variation in future rosters. This is sufficiently unlikely, so we conclude there is evidence of an **association**: shirt color appears linked to survival among Enterprise crew.

## Where Will You See Chi-Square Tests of Independence?

- Biology/Genetics: Testing whether eye color is associated with gene variant in a sample of fruit flies.
- **Medicine:** Determining if *treatment type* is associated with *recovery rate* in a randomized controlled trial.
- **Public Health:** Investigating if *smoking status* is associated with *lung disease prevalence* in a community health survey.
- **Business/Marketing:** Exploring whether *purchase preference* is related to *age group* in a consumer sample.
- **Political Science:** Examining if *voting preference* is associated with *education level* in a poll.

**Key idea:** Chi-square independence tests appear wherever you have *two categorical variables* and want to know if they are related.

# Chi-Square Test of Homogeneity: Sports Preference by Continent

**Scenario:** A sports marketing firm surveys random samples of adults from three continents to learn about their favorite sport to watch. Each participant picks one of: **Soccer**, **Basketball**, or **Cricket**.

|           | Soccer | Basketball | Cricket | Total |
|-----------|--------|------------|---------|-------|
| Europe    | 45     | 35         | 20      | 100   |
| Asia      | 30     | 25         | 45      | 100   |
| North Am. | 25     | 60         | 15      | 100   |
| Total     | 100    | 120        | 80      | 300   |

Question: Is the distribution of favorite sports the same across continents?

# Chi-Square Test of Homogeneity: Sports Preference by Continent

**Scenario:** A sports marketing firm surveys random samples of adults from three continents to learn about their favorite sport to watch. Each participant picks one of: **Soccer**, **Basketball**, or **Cricket**.

|           | Soccer | Basketball | Cricket | Total |
|-----------|--------|------------|---------|-------|
| Europe    | 45     | 35         | 20      | 100   |
| Asia      | 30     | 25         | 45      | 100   |
| North Am. | 25     | 60         | 15      | 100   |
| Total     | 100    | 120        | 80      | 300   |

Question: Is the distribution of favorite sports the same across continents?

## Step 1: Hypotheses and Important Information

**Null hypothesis** ( $H_0$ ): The distribution of favorite sports is the **same** for all continents.

**Alternative hypothesis** ( $H_A$ ): The distribution of favorite sports **differs** for at least one continent.

**Test:** Chi-square test of homogeneity on a  $3 \times 3$  table.

**Significance level:**  $\alpha = 0.05$ .

## Step 2: Check Conditions

- Randomness: Each continent's sample is a simple random sample of adults from that continent.
- 10% Condition: Each sample size n = 100 is less than 10% of the adult population on that continent.
- **Expected Counts:** All expected cell counts  $E_{ij} \ge 5$  (verified on next slide).

## Step 3: Expected Counts & Test Statistic

**Expected counts:**  $E_{ij} = \frac{\text{(row total)(col total)}}{\text{grand total}}$ Example:  $E_{\text{Europe, Soccer}} = \frac{100 \times 100}{300} = 33.33$ 

|           | Soccer (E) | Basketball (E) | Cricket (E) |
|-----------|------------|----------------|-------------|
| Europe    | 33.33      | 40             | 26.67       |
| Asia      | 33.33      | 40             | 26.67       |
| North Am. | 33.33      | 40             | 26.67       |

$$\chi^2 = \sum \frac{(O-E)^2}{E} \approx 39.41$$

Degrees of freedom: (3-1)(3-1)=4

$$p = P(\chi_{(4)}^2 \ge 39.41) \approx 2.5 \times 10^{-8}$$

## Step 4: Conclusion with Interpretation

Since  $p \approx 2.5 \times 10^{-8} < \alpha = 0.05$ , we **reject**  $H_0$ .

**Interpretation (AP style):** Assuming the distribution of favorite sports is truly the same across continents, there is an approximately 0.0000025% chance of observing a chi-square statistic as large as 39.41 purely by random variation in future samples. This is extremely unlikely, so we conclude there is strong evidence that sports preferences differ by continent.

## Chi-Square Independence vs. Homogeneity

#### **Chi-Square Test of Independence**

**Purpose:** Determine if two categorical variables are associated in *one population*.

**Data collection:** One random sample, each individual classified on both variables.

**Star Trek Example:** Sample = Enterprise crew; Variables = *Shirt color* & *Status (alive/dead)*.

**Key question:** Is there an association between the variables?

#### **Chi-Square Test of Homogeneity**

**Purpose:** Compare the distribution of a categorical variable across *two* or more populations.

**Data collection:** Two or more independent random samples, each classified on the same categorical variable.

**Sports Example:** Samples = 100 adults from each of 3 continents; Variable = Favorite sport.

**Key question:** Do all populations have the same distribution of the variable?

**Tip to Discriminate:** Ask: "Was the data from *one sample classified twice* ( $\rightarrow$  independence) or *multiple samples classified once* ( $\rightarrow$  homogeneity)?"

August 8, 2025

## Practice: Which Chi-Square Test?

For each scenario, decide if you would use a **Chi-Square Goodness-of-Fit**, **Chi-Square Independence**, or **Chi-Square Homogeneity** test.

- A poll of 500 city residents asks for their favorite type of cuisine (Italian, Chinese, Mexican). You want to see if the distribution matches last year's city report.
- One random sample of university students is classified by year in school (Freshman, Sophomore, etc.) and whether they have a campus meal plan (Yes/No).
- Separate random samples from three grocery stores record whether each shopper purchased produce, meat, or bakery items.
- A marketing survey asks 1,000 randomly selected consumers to pick their favorite soda brand. You want to test if the proportions match the company's claimed distribution.
- Random samples of patients from four hospitals record whether their treatment outcome was "Full Recovery," "Partial Recovery," or "No Recovery."