Unit 8 Review: Chi-Square Inference (AP Statistics) Goodness-of-Fit • Independence • Homogeneity # The χ^2 Distribution **Notation:** $X \sim \chi_k^2$ (k = degrees of freedom). Facts: - Mean E(X) = k; Variance Var(X) = 2k. - Right-skewed for small k; more symmetric as k grows. - If $Z \sim N(0,1)$ then $Z^2 \sim \chi_1^2$. - If $X_i \sim \chi^2_{k_i}$ are independent, then $\sum X_i \sim \chi^2_{\sum k_i}$. Use tech/tables to find p-values: $p = P(\chi_k^2 \ge \chi_{\text{obs}}^2)$ (always right-tail). ## Core Ingredients Expected count formula (all tests): $$E_{ij} = \frac{\text{(row total)(column total)}}{\text{grand total}}$$ Test statistic: $$\chi^2 = \sum \frac{(O-E)^2}{E}$$, df depends on test (below). # Conditions (all χ^2 tests) - Randomness: Data from random sample(s) or randomized experiment. - Independence of observations: Each individual contributes to exactly one cell. If sampling w/o replacement, check 10% condition. - All expected counts ≥ 5: Ensures χ² approximation is valid. #### Which Test Do I Use? - Goodness-of-Fit (GOF): One categorical variable; compare sample distribution to a *claimed/model* distribution. - Independence: One random sample; classify each individual on two categorical variables; ask if variables are associated. - **Homogeneity:** Two or more independent random samples (or treatments); compare the same categorical variable's distribution across groups. #### Degrees of Freedom (df) - GOF: df = k 1 (where k = # categories). - Independence/Homogeneity: df = (r-1)(c-1) (rows \times columns). #### 4-Step Workflow (all tests) - 1) State: Context; H_0 and H_a . - GOF: H_0 : distribution equals the stated model; H_a : not that model. - Independence: H₀: variables are independent; H_a: associated. - Homogeneity: H₀: all groups share the same distribution; H_a: at least one differs. - 2) Plan/Check: Conditions as above. - **3) Do:** Compute E_{ij} , χ^2 , df, and p-value. - 4) Conclude: Compare p to α ; write a contextual conclusion. #### **Interpretation Templates** #### P-value (AP style): "Assuming H_0 is true, there is about a $p \times 100\%$ chance of getting a χ^2 statistic as large as or larger than the observed value purely by random sampling variation." #### Decision/Context: If $p < \alpha$: Reject H_0 ; there is evidence of (association / difference from model). If $p \ge \alpha$: Fail to reject H_0 ; data are consistent with (independence / the model / equal distributions). ### Mini Examples (at a glance) **GOF** (Mendel): Compare pea phenotypes to 3:1 model; df = 2 - 1 = 1. **GOF** (Teddy Grahams): Up/Down vs 1:1 claim; df = 1. **Independence** (Star Trek): Shirt color (3) vs Status (2); df = (3-1)(2-1) = 2. **Homogeneity (Sports):** 3 continents $(r = 3) \times 3$ sports (c = 3); df = (3 - 1)(3 - 1) = 4. ### Common Pitfalls - Using observed counts < 5 (combine categories or collect more data). - Treating percentages as inputs—always use counts for χ^2 . - Forgetting that χ^2 tests are **right-tailed only**. - Writing non-contextual conclusions (always tie back to the story). ## Quick Tech Notes Most calculators/software report χ^2 , df, and p directly given the contingency table. For GOF, supply observed counts and the expected % model. #### **TI-84** Commands **GOF Test:** 1. Enter observed counts in L1, expected counts in L2 2. STAT \rightarrow TESTS $\rightarrow \chi^2$ GOF-Test 3. Set df = categories $-1 \rightarrow$ Calculate Independence/Homogeneity: 1. 2nd MATRIX \rightarrow EDIT \rightarrow Enter observed counts in [A] (no totals) 2. STAT \rightarrow TESTS \rightarrow χ^2 -Test 3. Observed = [A], Expected = [B] \rightarrow Calculate 4. View expected counts: 2nd MATRIX \rightarrow NAMES \rightarrow [B]