Unit 8 Review: Chi-Square Inference (AP Statistics)

Goodness-of-Fit • Independence • Homogeneity

The χ^2 Distribution

Notation: $X \sim \chi_k^2$ (k = degrees of freedom). Facts:

- Mean E(X) = k; Variance Var(X) = 2k.
- Right-skewed for small k; more symmetric as k grows.
- If $Z \sim N(0,1)$ then $Z^2 \sim \chi_1^2$.
- If $X_i \sim \chi^2_{k_i}$ are independent, then $\sum X_i \sim \chi^2_{\sum k_i}$.

Use tech/tables to find p-values: $p = P(\chi_k^2 \ge \chi_{\text{obs}}^2)$ (always right-tail).

Core Ingredients

Expected count formula (all tests):

$$E_{ij} = \frac{\text{(row total)(column total)}}{\text{grand total}}$$

Test statistic:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$
, df depends on test (below).

Conditions (all χ^2 tests)

- Randomness: Data from random sample(s) or randomized experiment.
- Independence of observations: Each individual contributes to exactly one cell. If sampling w/o replacement, check 10% condition.
- All expected counts ≥ 5: Ensures χ² approximation is valid.

Which Test Do I Use?

- Goodness-of-Fit (GOF): One categorical variable; compare sample distribution to a *claimed/model* distribution.
- Independence: One random sample; classify each individual on two categorical variables; ask if variables are associated.
- **Homogeneity:** Two or more independent random samples (or treatments); compare the same categorical variable's distribution across groups.

Degrees of Freedom (df)

- GOF: df = k 1 (where k = # categories).
- Independence/Homogeneity: df = (r-1)(c-1) (rows \times columns).

4-Step Workflow (all tests)

- 1) State: Context; H_0 and H_a .
 - GOF: H_0 : distribution equals the stated model; H_a : not that model.
 - Independence: H₀: variables are independent; H_a: associated.
 - Homogeneity: H₀: all groups share the same distribution;
 H_a: at least one differs.
- 2) Plan/Check: Conditions as above.
- **3) Do:** Compute E_{ij} , χ^2 , df, and p-value.
- 4) Conclude: Compare p to α ; write a contextual conclusion.

Interpretation Templates

P-value (AP style):

"Assuming H_0 is true, there is about a $p \times 100\%$ chance of getting a χ^2 statistic as large as or larger than the observed value purely by random sampling variation."

Decision/Context:

If $p < \alpha$: Reject H_0 ; there is evidence of (association / difference from model).

If $p \ge \alpha$: Fail to reject H_0 ; data are consistent with (independence / the model / equal distributions).

Mini Examples (at a glance)

GOF (Mendel): Compare pea phenotypes to 3:1 model; df = 2 - 1 = 1.

GOF (Teddy Grahams): Up/Down vs 1:1 claim; df = 1. **Independence** (Star Trek): Shirt color (3) vs Status (2); df = (3-1)(2-1) = 2.

Homogeneity (Sports): 3 continents $(r = 3) \times 3$ sports (c = 3); df = (3 - 1)(3 - 1) = 4.

Common Pitfalls

- Using observed counts < 5 (combine categories or collect more data).
- Treating percentages as inputs—always use counts for χ^2 .
- Forgetting that χ^2 tests are **right-tailed only**.
- Writing non-contextual conclusions (always tie back to the story).

Quick Tech Notes

Most calculators/software report χ^2 , df, and p directly given the contingency table. For GOF, supply observed counts and the expected % model.

TI-84 Commands

GOF Test: 1. Enter observed counts in L1, expected counts in L2 2. STAT \rightarrow TESTS $\rightarrow \chi^2$ GOF-Test 3. Set df = categories $-1 \rightarrow$ Calculate

Independence/Homogeneity: 1. 2nd MATRIX \rightarrow EDIT \rightarrow Enter observed counts in [A] (no totals) 2. STAT \rightarrow TESTS \rightarrow χ^2 -Test 3. Observed = [A], Expected = [B] \rightarrow Calculate 4. View expected counts: 2nd MATRIX \rightarrow NAMES \rightarrow [B]