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Unit 9 Overview

Review: least-squares regression from Unit 2 (slope b, intercept a, r ,
s, r2)

Conditions for regression inference (LINER)

Sampling distribution of b; standard error SEb

t-interval for slope β

t-test for slope: H0 : β = 0 vs. Ha (directional or two-sided)

Reading and interpreting computer output

Worked examples with the same datasets/figures from Unit 2
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From Description (Unit 2) to Inference (Unit 9)

Model: Y = α+ βx + ε, with ε ∼ Normal(0, σ).

Fit to sample: ŷ = a+ bx where b = r
sy
sx

and a = y − bx .

s (residual SD): s =

√∑
(yi−ŷi )

2

n−2 .

In Unit 9 we ask: what does our sample slope b tell us about the population
slope β?

We will reuse your Unit 2 figures (scatterplots, residuals) and now add
intervals/tests for β.
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Conditions for Regression Inference: LINER

L — Linearity: The mean relationship is linear. Check: scatterplot and residual
plot (no curve).
I — Independence: Observations are independent (by design); for random
sampling/assignment.
N — Normality of Residuals: Residuals are approximately normal. Check:
histogram or NPP of residuals.
E — Equal Variance: Constant spread of residuals across x (homoscedastic).
R — Randomness: Data arise from a random process (random
sample/assignment).

If these are reasonably met, we may proceed with t-procedures for β.
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Sampling Distribution of the Sample Slope b

Under the model assumptions, the sampling distribution of b is approximately:

t-distributed with df = n − 2, E [b] = β, SEb =
s√∑

(xi − x̄)2
.

s is the residual standard deviation; s =

√∑
(yi − ŷi )2

n − 2
.

The spread of b shrinks when n is larger and when x has more spread
(
∑

(x − x̄)2 big).
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t-Interval and t-Test for the Slope β

Confidence Interval for β (level C):

b ± t⋆df=n−2 SEb

Hypothesis Test for β (two-sided):

H0 : β = 0 vs Ha : β ̸= 0, t =
b − 0

SEb
, df = n − 2.

p-value: area in tn−2 beyond |t| (double tail for two-sided).

Interpretation rule-of-thumb: If the CI for β excludes 0, the test at the
matching α rejects H0.
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Regression Example: Price vs. Engine Size
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Normal Probability Plot
Dependent variable:

price

enginesize 167.698∗∗∗

Constant −8,005.446∗∗∗

Observations 205
R2 0.764
Adjusted R2 0.763
Residual Std. Error 3,889.454 (df = 203)
F Statistic 657.640∗∗∗ (df = 1; 203)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Regression Conditions (LINER) — Car Price vs Engine
Size

L — Linearity: Scatterplot shows a straight-line trend with no obvious curvature;
residual plot shows no systematic pattern. ✓

I — Independence: Random sampling/assignment assumed. If sampling without

replacement, verify the 10% condition: n ≤ 0.1N.

If the population is all individual cars/listings in the market, N is huge, so
n = 205 ≪ 0.1N — mark ✓.
If the population is model types in a year, N may be only a few hundred, so
n = 205 may violate n ≤ 0.1N — do not mark ✓; note the limitation.

N — Normality of residuals: Residual histogram and normal probability plot are roughly
symmetric/linear; no heavy tails or extreme outliers. ✓

E — Equal variance (Homoscedasticity): Residuals have an approximately constant
vertical spread across engine sizes; no “fan” shape. ✓

R — Randomness: Data treated as a random sample of comparable car models; no
evidence of selection or measurement bias. ✓

Conclusion: All LINER conditions appear reasonably met, so t-procedures for the slope β are
appropriate.
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95% Confidence Interval for Slope b

Estimate Std. Error t value Pr(>|t|)
(Intercept) -8005.4455 873.2207 -9.17 0.0000
enginesize 167.6984 6.5394 25.64 0.0000

From regression output:

b = 167.6984, SEb = 6.5394, df = 203

Critical value for 95% CI:

t∗203, 0.025 ≈ 1.972

CI: b ± t∗ · SEb

167.6984± 1.972(6.5394) = 167.6984± 12.89

(154.81, 180.59)

Interpretation: We are 95% confident that each additional unit of engine size is
associated with an increase of between about $154.81 and $180.59 in car price.
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Hypothesis Test for Slope b

Estimate Std. Error t value Pr(>|t|)
(Intercept) -8005.4455 873.2207 -9.17 0.0000
enginesize 167.6984 6.5394 25.64 0.0000

Test:

H0 : β = 0 vs Ha : β ̸= 0

From regression output:

t =
167.6984− 0

6.5394
≈ 25.64, df = 203

Two–tailed p-value:

p = 2 · P (t203 > 25.64) ≈ 0.0000

Decision: Since p ≪ 0.05, reject H0.
Conclusion (in context): Assuming the true slope is 0 (meaning engine size has
no association with price in the population), the probability of getting a sample
slope of 167.6984 or more extreme purely by random chance is essentially 0. This
provides very strong evidence that engine size and price are positively associated

in the population.
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Beyond AP Stats: Regression in the Future

Where this shows up later:

College Statistics — deeper inference methods, more formal derivations of formulas.

Economics, Psychology, Biology, Engineering — regression is a primary analysis tool for
real-world data.

Data Science & Machine Learning — regression ideas are the backbone of predictive
modeling.

Extensions beyond simple linear regression:

Multiple Linear Regression (MLR) — modeling a response using several explanatory
variables at once.

Polynomial Regression — modeling curved relationships by adding higher-order terms.

Logistic Regression — modeling the probability of a binary outcome (yes/no, pass/fail).

Generalized Linear Models (GLMs) — extending regression to many types of outcomes.

Machine Learning methods — regularization (ridge, lasso), decision trees, random
forests, and neural networks build on regression concepts.

Takeaway: What you’ve learned here — interpreting slopes, checking conditions, making
inferences — is the foundation for far more powerful statistical tools.
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