AP STATISTICS — UNIT 9 QUICK NOTES

Model: $Y = \alpha + \beta x + \varepsilon$, $\varepsilon \sim N(0, \sigma)$

Sample fit: $\hat{y} = a + bx$, $b = r \frac{\dot{s}_y}{s_x}$, $a = \bar{y} - b\bar{x}$

Residual SD:
$$s = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}, \quad SE_b = \frac{s}{\sqrt{\sum (x_i - \bar{x})^2}}, \quad df = n-2$$

Conditions (LINER):

- 1. L Linearity: Scatterplot/residual plot show no curvature.
- 2. I Independence: Observations independent; if sampling w/o replacement, $n \leq 0.1N$.
- 3. **N Normality:** Residuals roughly normal (histogram/NPP).
- 4. E Equal variance: Residual spread constant across x.
- 5. R Randomness: Data from random sample or random assignment.

SPDC Framework for Regression Inference:

State Identify the population slope β and state hypotheses or confidence level in context. Clearly define variables.

Plan Name the procedure (t-test or t-interval for slope) and check LINER conditions.

Do Perform the calculations — find b, SE_b , test statistic $t = \frac{b-\beta_0}{SE_b}$, and p-value; or compute $b \pm t^*SE_b$ for a CI.

Conclude Interpret the results in context, linking back to the slope and the original research question.

Confidence Interval for β :

CI:
$$b \pm t_{n-2}^{\star} \cdot SE_b$$

Interpretation: "We are C% confident that the slope for the population is between"

Hypothesis Test for β :

$$H_0: \beta = 0 \quad H_a: \beta > 0, \ \beta < 0, \ \text{or} \ \beta \neq 0$$

$$t = \frac{b-0}{SE_b}, \quad p = 2 \cdot P(t_{n-2} > |t|)$$

Interpretation: Probability of getting a slope as extreme as b if H_0 were true.

TI-84 Instructions:

- 1. Enter x in L1, y in L2.
- 2. Turn on diagnostics: 2nd \rightarrow 0 (CATALOG) \rightarrow DiagnosticOn.
- 3. Run LinRegTTest: STAT \rightarrow TESTS \rightarrow F:LinRegTTest.
- 4. Select L_1, L_2 , alternative hypothesis $(\neq, >, <)$, and Calculate.
- 5. Output: a (intercept), b (slope), s, SE_b , t, p, r, r^2 .

Quick Tips:

- Always check LINER before t-procedures.
- CI excluding $0 \implies \text{reject } H_0 \text{ at matching } \alpha$.
- Include context, variables, & units in interpretations.
- R^2 : percent of variation in y explained by x.

Future Topics: Multiple Linear Regression, Logistic Regression, GLMs, Machine Learning.